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Abstract. We present a new microscopic model of growth and sublimation (g/s) of ice crystals in 
the atmosphere. This model is based on the assumption that the flux of vapor to the crystal surface 
is uniform over each flat crystal face. It thus differs fundamentally from the standard "capacitance" 
model for crystal growth, in which the mixing ratio is assumed uniform at the surface. In the new 
model the surface influence on growth is calculated self-consistently in terms of local environmen- 
tal conditions, again differing sharply from the standard models in which this influence is either 
ignored or assigned a uniform, externally prescribed value. The new model leads to predictions of 
the evolution of ice crystal shape as well as mass. We find that predicted g/s rates are generally 
smaller than those predicted by the earlier models. The general trends both in g/s rates and in crystal 
hollowing predicted by the model are consistent with field and laboratory observations. The values 
of certain surface parameters needed for application of our model must be found from experiment. 
We review and compare the relevant laboratory experiments on ice crystal g/s rates and show their 
lack of mutual consistency. Therefore the surface parameters inferred from these experiments are 
necessarily uncertain. We show that the surface parameter values can be inferred from observations 
of crystal hollowing, since our model allows the prediction of environmental conditions at which 
hollowing should occur. 

1. Introduction 

1.1. Calculating Growth and Sublimation Rates 

1.1.1. Need for a new framework. Vapor grown 
atmospheric ice crystals are found in a wide range of ther- 
modynamic regimes. In mixed phase clouds, strong 
updrafts or downdrafts the crystals experience conditions 
very far from equilibrium. Their growth/sublimation (here- 
after g/s) rates are rapid and largely determined by the rates 
of diffusion of heat and moisture to and from the crystal. 
Under these conditions the usual "capacitance" model 
yields quantitatively accurate results for the rate of mass 
uptake, although it does not contain any information on 
crystal shape evolution. 

On the other hand, in and near ice clouds at weak 
updrafts/downdrafts in the upper troposphere and strato- 
sphere the environmental conditions near crystals are closer 
to equilibrium, and because vapor pressures are low, the 
crystals are quite small. Recent observations [Arnott et 
a/.,1994; StrOm and Heintzenberg, 1994] show that in and 
near cirrus the numbers of crystals whose linear dimensions 
do not exceed around 70-100 gm may be far larger than 
previously suspected. The g/s rates of these small ice parti- 
cles may be determined largely by processes occurring on 
the crystal surfaces, rather than in the gaseous crystal envi- 
ronment. The capacitance model does not incorporate these 
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processes and may significantly overestimate g/s rates for 
these crystals. In this paper we develop a theoretical frame- 
work for the study of ice crystal g/s rates which is applica- 
ble throughout the entire range of atmospherically realistic 
conditions. Our results show that in and near fully glaciated 
clouds the capacitance model can significantly overestimate 
g/s rates, and we show the dependence of the error as a 
function of crystal shape and size. 

In all atmospheric conditions the ice crystal shape is 
determined by processes which occur on the crystal sur- 
faces. The shapes, as well as sizes, are important determi- 
nates of the radiative properties of ice clouds [Kinne and 
Liou, 1989]. Our model framework allows prediction of the 
crystal aspect ratios as functions of time and environmental 
conditions during steady state g/s given certain assumptions 
about the surface growth mechanism, and it also predicts 
the environmental conditions under which steady state g/s 
ceases and crystal hollowing begins. We present these pre- 
dictions and laboratory evidence supporting them. 

The organization of this paper is as follows. The rest of 
the introduction contains a discussion of the problems with 
the existing treatments of ice crystal growth. In section 2 
we review the formalism for computing the g/s rate of a 
spherical crystal, taking advantage of the simplicity of that 
system to present the basis for the calculations to follow. 
The .g/s rates we derive are functions of the surface imped- 
ance, and we discuss several models for this impedance in 
section 3. In section 4 we develop a model for g/s rates of 
nonspherical flat-faced crystals, present the resulting g/s 
rates for a range of crystal parameters, and compare these 
calculations to those from the capacitance model. In section 
5 the new model is applied to the determination of ice crys- 

7033 



7034 NELSON AND BAKER: NEW THEORY OF ICE CRYSTAL GROWTH 

tal shape evolution. Section 6 contains a discussion of the 
new model and its predictions for both g/s rates and crystal 
hollowing in the light of atmospheric and laboratory obser- 
vations. Further applications of this model to ice crystal g/s 
in the real atmosphere are discussed in section 7. Appendix 
A contains a list of symbols used in the equations to follow. 

1.1.2. Basis for the new model. There have been 2 

different approaches to the problem of calculating ice crys- 
tal growth rates. The most common approach is based on 2 
assumptions: (1) the water vapor mixing ratio at the surface 
is uniform and in equilibrium with the ice, 

q• = qcq (T•) [ (kg H20 ) / (kg air) ], (1) 
and (2) the crystal shape is approximated as an ellipsoid of 
revolution. 

The first assumption makes the vapor growth problem 
analogous to the problem of computation of the electro- 
static potential surrounding a capacitor with the shape of 
the crystal, so this model for •s is called the "capacitance" 
model. Equation (1) cannot hold exactly for a growing or 
sublimating crystal since the mass uptake of the crystal 
depends only on the vapor mixing ratio at the surface, and 
the surface vapor mixing ratio is exactly in equilibrium with 
the surface only when the crystal is in equilibrium. A more 
basic difficulty is the fact that the vapor flux to the surface 
calculated from equation (1) would not be uniform over a 
crystal face and therefore it could not produce the observed 
faceted ice crystal growth shapes. Moreover, ice crystals are 
not ellipsoidal in shape. Observations [Heynsfield and 
Platt, 1987; Sassen et al.,1989b; Ramaswamy and 
Detwiler, 1986.; Arnott et a/.,1994] show that most ice 
crystals in cirrus are hollow or solid hexagonal columns or 
thick plates of aspect ratio F--c/a between 0.1 and 10, 
where 2c is the crystal length along the c-axis and 2a the 
length along the minor a axis. 

A newer approach to the study of g/s rates [Kuroda, 
1984; Mackenzie and Haynes, 1992] uses a physically real- 
istic boundary condition at the surface, but approximates 
the ice crystal as a sphere. A new model is needed that is 
based on a physically realistic boundary condition and 
incorporates realistic crystal shapes. 

Surface transport processes control the rate of deposition 
and sublimation of molecules at the ice/vapor interface. We 
define a function, o•, that varies over the crystal surface and 
is equal to the fraction of molecules incident on the surface 
that become incorporated into the crystal at each point. 
Since o• is always less than 1, growth is impeded by the pro- 
cesses that determine o•. We show below that the surface 

impedance to the flux of vapor to a crystal is 1/o•. 
We assume the surface transport processes do not redis- 

tribute molecules across dimensions of order of the face 

width. This is consistent with the experiments of Mason et 
al. [1963] if the crystal faces are larger than -10 gm across. 
Then the correct boundary condition for uniform growth of 
crystals is • that the vapor flux to each crystal face must be 
uniform over that face; that is, 

33--•qz I =Fv[kg H20/kg air m2s] = uniform, (2) Dg face 
where D g [m2/s] is the vapor diffusivity and z is the coor- 
dinate normal to the crystal face. (The electrostatic analog 
is that of a uniform electric field, instead of a uniform 
potential at the crystal surface.) 

Previous authors [e.g., Mason, 1993] have argued that 
both equation (1) and the uniform flux condition (equation 
(2)) can hold. In their model, uniform flux is maintained 

through a surface transport process from a region of higher 
vapor diffusive flux to a region of lower diffusive flux. 
However, it is unlikely that such a process could ever com- 
pletely compensate for a nonuniformity in vapor diffusive 
flux (even if the molecules could migrate across large dis- 
tances). Moreover, surface transport should not produce a 
flux of molecules away from growth sites. (Those sites at 
which the molecules are most strongly bound.) In this paper 
we use equation (2) as the surface boundary condition to 
derive analyti• expressions for the g/s rates of stationary, 
finite circular cylinders. 

2. G/S Rates of Spherical Crystals 

In the absence of airflow the mixing ratio q and tempera- 
ture T adjacent to the crystal satisfy the steady state 
Laplace's equations; 

V: q = 0, (3) 

V 2 T = 0. (4) 
At large distances from the crystal the mixing ratio and 
temperature approach their ambient values, qoo and Too, 
respectively. The temperature approaches T s near the crys- 
tal surface. The surface vapor boundary condition is devel- 
oped below. 

The boundary condition on q at the surface determines 
the mixing ratio at the crystal surface, qs, and hence the 
vapor flux to the crystal. This boundary condition is there- 
fore a very important element of a crystal growth model 
and will be the focal point for discussion in later sections. 
The vapor flux to the surface, determined from the solution 
to equation (3), is 

qoo F v = Dg = Dg •, (5) 
a a 

where a is the crystal radius. We require (equation (2)) that 
the flux be uniform over the surface. (For the spherical 
geometry this is consistent with uniform qs.) For small 
departures from equilibrium, we can write 

v 

F v = c• (qs- qeq (Ts)) = c•qooOs, (6) 
where • = d(8kT)/(rim) is the mean thermal velocity 
of a water vapor molecule of mass m. Equation (6) defines 
o•, also known as the condensation (deposition) coefficient; 
0 < o• < 1. The condensation coefficient (o0 depends on 
the surface supersaturation (os). In section 3 we introduce 
several models of this dependence, based on current theo- 
retical ideas on the nature of the crystal surface. Then we 
obtain self-consistent values of c• (os) and the growth rate 
in terms of the environmental conditions and surface prop- 
erties. 

The flux of heat to the surface is due to the exchange of 
energy from air molecules colliding with the surface. Since 
an air molecule is heavier than a water molecule, the energy 
transfer incident from an air molecule to the surface is 

expected to be very efficient [Goodman, 1980]. Therefore 
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the air molecules should acquire a velocity distribution 
characteristic of the surface temperature. The thermal 
accommodation coefficient, which is a measure of the effi- 
ciency of this energy transfer, should be close to 1 and the 
resulting heat flux is very nearly given by 

dT I ' F h = lCg•-• r [W/m2] (7) 
where •c is the thermal conductivity in the environment. g 

The solution of equation (4) subject to the appropriate 
boundary conditions is analogous to that (equation (5)) for 
the vapor mixing ratio. 

In general, the crystal absorbs and emits radiation from 
its environment. However, our calculations suggest that for 
realistic atmospheric temperature profiles the effect of radi- 
ative exchange on crystal g/s rates is generally small unless 
the crystal dimensions are greater than approximately 50 
gm and the humidity is within approximately 5% of equi- 
librium. This situation may not be uncommon, but for sim- 
plicity we ignore the radiative effects in this paper. Their 
addition represents a straightforward modification to the 
results we will present here and simply translates the effec- 
tive supersaturation experienced by a particle, raising it 
during radiative cooling and lowering it during heating. 

We assume that the conductive and latent heat fluxes bal- 

ance at the crystal surface 

lPair 
F h + •F v = 0, (8) 

From eqs. (6) and (10) 

Os = 1 + a' ' (12) tot • 

so that for a' ß tot O• >> 1 (vapor impedance>>surface imped- 
ance) the surface supersaturation goes to zero; that is, the 
mixing ratio adjacent to the surface approaches its equilib- 
rium value. Conversely, when a'tot(• << 1, o s = ooo. 

The growth rate is found from equation (10): 

da _ Pair Fv ' (13) 
dt Pic½ 

where Pice [kg m -3] is the density of ice. 
The vapor impedance (a'v) depends on the mean free 

path for water vapor molecules ( -- Du/re) and the crystal 
radius. In the atmosphere the mean fre• path increases with 
altitude due to the decrease in pressure. More importantly, 
the mean observed crystal sizes decrease with altitude at 
cold temperatures because of lower growth rates. At high 
altitudes a 20 !.tm diameter ice crystal has a vapor imped- 
ance of approximately 20. 

The thermal impedance (a'th) is also proportional to the 
crystal radius. Thee ratio of the thermal impedance to the 
vapor impedance is roughly 1.3 at 0øC, but drops rapidly to 
<0.1 for T <-40øC. Its rapid decrease with temperature is 
due to the rapid decrease of qoo ( = qeq(Too)) with Too. 
Therefore in most ice phase clouds the thermal impedance 
can be neglected. We now examine the surface impedance. 

where 1 (J/molecule) is the latent heat of sublimation/mole- 
cule and Pair [kg m -3] is the density of moist air. 

For T s -Too sufficiently small, the Clausius-Clapeyron 
equation can be linearized and from eqs. (5), (6), and (8) 
we can solve for F v. We define the nondimensional total 
volume impedance as the sum of the vapor and thermal 
impedances 

- a•kqooPa•rl ' a' va (1'- 1) ma' +a' tot • 4D• + 4•cgm v th, (9) 
where 1' -- 1/kToo. The resulting vapor flux to the crystal is 

v 

F v = , (10) 
1/O; + a'to t 

where the far-field supersaturation (•oo) is given by 

qoo - qcq (Too) 
ooo = . (11) 

The numerator represents the maximum, so-called Wil- 
son-Frenkel flux [see, for example, van der Ecrdcn, 1993], 
while the two terms in the denominator represent imped- 
ances to growth due to surface transport ( 1 ! o•) and volume 
transport (a'tot). The relationship between vapor flux and 
ooo in equation (10) is analogous to that between current 
and voltage in an electrical circuit; the terms in the denomi- 
nator of eq (10) play the roles of impedances to the "cur- 
rent" (v. apor flux) driven by the "voltage" (environmental 
humidity). Equation (10) is identical to the result obtained 
by other authors [Fukuta and Walter, 1970; Kuroda, 1984; 
MacKenzie and Haynes, 1992]. 

3. Surface Impedance 

We can now compute the growth rate of a spherical crys- 
tal via equation (10) if we have a model for c•(Os). We adopt 
a picture of the ice surface based on ideas that are quite 
generally applicable to crystals in gaseous environments. 
Each crystal face is assumed to be a macroscopically flat 
plane of dimensions much larger than the mean free path in 
the gaseous environment (water vapor in air). We assume 
that each face consists of regions relatively devoid of posi- 
tions for permanent attachment, called terraces, and regions 
relatively rich in them, called ledges. Molecules arriving 
from the vapor phase strike the terrace, stick, and a fraction 
of them (c•) then migrate to a ledge. The remaining mole- 
cules desorb before reaching a ledge and do not grow into 
the crystal. Transport along the terrace may take place via 
individual molecular hopping on the terrace as in surface 
diffusion, or it may be a more complicated cooperative phe- 
nomenon. 

Little is known experimentally about the detailed struc- 
ture of the ice/vapor interface: until recently most observa- 
tions lacked the necessary resolution to reveal features at 
the necessary scales. In a study of crystals grown on glass, 
Sei and Gonda [1989] found evidence supporting the idea 
[Burton et al., [ 1951 ]; hereafter referred to as BCF] that the 
surface consists of many, locally equidistant ledges formed 
continually via line dislocations which intersect the surface. 
On the other hand, McKnight and Hallett [1978], and 
Mizuno [1978] found that crystals growing free of attaching 
surfaces at temperatures near-15C and -3C grew with dis- 
location free surfaces, suggesting that under these condi- 
tions the ledges are the edges of 2-D nuclei, as suggested 
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also by Frank [1982]. Thus it appears that ice crystal 
growth free of attaching surfaces (as in the atmosphere) 
usually occurs via 2-D nucleation while sublimation occurs 
via ledges receding from the crystal edges [Shaw and 
Mason, 1955]. 

The surface impedance to g/s can be calculated for each 
model of ledge generation and surface transport. We pro- 
pose here a 2 parameter equation to approximate ct (Os) 
for a variety of ledge generation mechanisms and surface 
processes: 

0.@ 

0.6 
ledge nucleation (n = 10) 

0.4 stacking fault (n = 3) 

0.2 

• = tanh I/•-•ls)•, ({Js) /••-•) n (14) 

where o• and n are properties of each crystal face and 
depend on temperature. Qualitatively, the basic features of 
the ct (os) relationship are common to 2-D nucleation and 
to all other ledge generation mechanisms, as shown in Fig- 
urel, where we plot equation (14) for n = 1 (the form con- 
sistent with the BCF mechanism), and schematic curves for 
stacking fault-induced nucleation [Ming et a/.,1988] and 
ledge nucleation. In all cases, ct--> 0 as Os--> 0 and 
ct--> 1 as o s-->oo; the surface impedance becomes 
increasingly important as the ambient supersaturation is 
reduced. Unfortunately, this low supersaturation regime has 
not been well explored experimentally. 

Given the similar qualitative behavior predicted for all 
these mechanisms and the apparent experimental evidence 
that nucleation predominates as a general rule in the atmo- 
sphere, at least in growth, we will use equation (14) with 
n > 1 to represent the relation between ct and o• as appro- 
priate in the rest of this paper. However, as an algebraically 
simple illustration of our procedure for computing the g/s 
rates, we assume n=l in equation (14) and use equation 
(12) (which relates rt, o s, and oo.) to calculate ct as a 
function of the environmental conditions and the crystal 
size. Assuming that tanh (o•/o•) - 1, it follows that 

ct. a' Jl øo. 1 (15) = X + 
The flux of vapor to the crystal surface (and thus the 

crystal growth rate) can be found by substituting 
equation(15) into equation (10). The left-hand side of 
equation (15) is the ratio of the volume impedances to the 
surface impedance. Vapor/heat diffusion is growth rate con- 
trolling when ct. a' is large while from equation (15), tot ' 

we see that at low ambient supersaturations and small crys- 
tal sizes this ratio is small, and surface impedance is the 
limiting factor in crystal growth. This behavior would also 
have been obtained if we had used a larger value of n in 
this derivation. 

The results of this section are shown schematically in 
Figure 2. The volume impedances are g/s rate limiting for 
high temperatures and large crystals (i.e., in mixed phase 
clouds); in strong updrafts at colder temperatures the vapor 
diffusion impedance is more important than the thermal 
impedance, and in .typical upper tropospheric and strato- 
spheric conditions the surface impedance becomes impor- 
tant. The qualitative features of these results are 
independent of the details of the surface processes and 
depend only on the general behavior of ct (os)shown in 
Figure 1. 

0 o .• 

Figure 1. Schematic curves of the condensation coeffi- 
cient as a function of surface supersaturation for several 
ledge formation models. 

4. Nonspherical Crystals 

In this section we derive the g/s rates of crystals of the 
simplest shapes with flat faces starting with the infinitely 
thin disk that receives flux only over its top and bottom 
faces. In section 4.2 we use the formalism derived for this 
case to discuss the somewhat more realistic case of circular 

cylindrical crystals of finite height. Circular cylinders have 
2 types of face, each with its own intrinsic surface pro- 
cesses. The evolution of crystal shape in then discussed in 
section 5. 

4.1. Vapor Diffusion to a Thin Disk 

Using the notation of the previous chapter, we solve 
Laplace's equation for the mixing ratio outside the disk 
subject to the boundary condition that the flux is uniform on 
the top and on the bottom of the disk. It is convenient to 
define nondimensional variables which we denote by 
primes, 

Zr, r q-qo. z'=-, =-,Aq': , (16) 
a a qoo 

(cold mixed phase clouds) 
vapor diffusion 

small 

surface T 
diffusion small Oroo large 

(ice phase cloud 

large 

heat conduction 

(warm mixed phase clouds) 

Figure 2. The growth rate limiting processes for ice crys- 
tals in different regions of the atmosphere. 
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eq 

Figure 3. Variation of mixing ratio and at across a crystal 
face showing ledge positions calculated using the BCF 
model of surface diffusion. 

where r is now the cylindrical radial coordinate and a is the 
disk radius. The nondimensionalized, boundary condition 
becomes 

3 , 
F'v--•-•rA q = ata'o s (r' < 1, z' --> 0). (17) 

With the above boundary condition the nondimensionalized 
solution of Laplace's equation is 

aq' (r', z') = -F'vh (r', z'), (18) 

where h is defined in Seeger [1953]. It represents the solu- 
tion for unit flux. 

The nonspherical geometry introduces a fundamentally 
new issue into the problem of crystal growth. That is; all 
points on the surface are no longer equivalent, so that since 
the normal gradient of q is uniform, qs will not generally 
be uniform. We must now add a physical assumption about 
the variations of at and o on the surface to be able to pro- 
ceed. Our assumption is •hat at is determined everywhere 
by its value at the ledge source positions. (These can be at 
dislocations, at other kinds of defects, or at crystal edges, 
and the ledges may be regularly spaced steps or the edges 
of 2-D nuclei.) It is here that at is controlled by the local 
mixing ratio (via equation (14)). As ledges collect surface 
admolecules and move away from their source, the local 
supersaturation to which they are subject will change. In 
regions of lower (higher) supersaturation the ledge spacing 
will be smaller (larger), and therefore 1/at, which is a mea- 
sure of the difficulty of surface transport to ledges, will be 
smaller (larger); that is, at will be larger (smaller). For uni- 
form •owth the product at.o s is uniform, as was assumed 
by, e.g., Kobayashi and Kuroda [1987]. Our procedure is to 
relate at to o s via equation (14) at the ledge source posi- 

z 

Figure 4. Variables and coordinates in the cylinder diffu- 
sion problem. 

tion, and thus to find the flux there. We then require that at 
and c• s vary with position on the surface in such a way as to 
keep their product (i.e., the vapor flux) uniform every- 
where. (See Figure 3.) Thus 

F' = at (r') a'o (r') = at (r') a' (Aq' (r') + o**) (19) V S S ' 

We insert equation (18) into equation (19) to solve for F' v, 
but the solution will depend on the crystal temperature. 
Solving the heat conduction equation in order to remove the 
dependence on crystal temperature is exactly analogous to 
the problem encountered for the sphere and will not be 
repeated here. The solution is 

v 

F¾ = 1 / at (r') + a'tot h (r', 0) ' (20) 
Note the resemblance to the spherical crystal case, equation 
(10). 

In contrast to the spherical crystal case, F v does not 
approach the capacitance model limit when ata'to t •> oo, 
although •s--> 0 in this limit. This is because equation 
(20) is derived for the case that the flux remains uniform 
across the disk. Physically, the zero surface impedance, uni- 
form growth limit cannot be attained; surface kinetic pro- 
cesses are required to keep the flux uniform on each face. 

Using the notation and procedure introduced for the lim- 
iting case of an infinitely thin disk, we next derive the g/s 
rate for a finite cylinder. 

4.2. Growth Rate of a Finite Cylinder 

For most atmospheric conditions a solid ice crystal is 
bounded by 2 types of faces: basal and prism. This shape is 
similar to that of a circular cylinder. We assume the crystals 
are circular cylinders in this development for analytic sim- 
plicity, although our general discussion also applies to hex- 
agonal columns. (See Figure 4.) 

The present treatment now closely follows that in the 
previous section. We assume now that the flux is deter- 
mined by its value at the ledge sources. We must therefore 
know where the ledge sources are on both the 'a' face and 
the 'c' face. At low supersaturations the ledges can only 
originate' at bulk dislocations or faults, and these could be 
anywhere on a face (if present at all). When the supersatu- 
ration (o**) becomes large enough to nucleate ledges on the 
surface, the expected positions for ledge sources are the 
regions of highest supersaturation. For simplicity we will 
assume that the region of ledge nucleation is at the edges 
(Figure 5), although this probably is not the case for crys- 
tals with very anisotropic growth rates [Nelson, 1994; also 
see Figure 9]. Knowledge of the ledge source positions 
allows us to find the g/s rates of each face and the total rate 
of mass uptake if the surface impedance (1/at) is known 
on each face. We summarize the calculations below for the 

case that the ledge sources are at the crystal edges and our 
results are given in equations (25) and (27). The reader 
who wishes to skip mathematical details can proceed 
directly to section 4.3. 

We define 

C • at F---, Cv -= v F, (21) 
a 
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Figure 5. Cross section of an ice crystal showing the 
assumed positions of the ledge sources. 

and the fluxes to the 'c' ('a') faces, F 'c and F'av ¾' • 

F'Cv--•-•7Aq'l(r ' 1), F'a--'•Aq TM (22) , v (1, z'). 

The technique for solving V2q ' = 0 with uniform fluxes 
on both faces is described in Nelson [1994] (Appendix) and 
is summarized in Appendix B. The general solution for the 
mixing ratio can be written 

Aq'(r',z,F) = ,• c r' z' a a , ' -Fv h ( , ,F)-F'vh (r',z,F).(23) 

Equation (23) is the analog of equation (18), and h a'c are 
the analogs of h for the thin disk case. Note that -h c is the 
mixing ratio when F 'c = 1 F 'a = 0 while -h a is that for V • V • 

F'• = 1, F'Cv = 0. Equation (23) shows that Aq' is deter- 
mined by the two fluxes F'v (c' a). This same relation holds 
for hexagonal prisms with different h functions. Numerical 
values of hc' a for circular cylinders are given in Appendix 
B. 

Next, in analogy with equation (19).we have 

F 'c = {gCc' a s ((c)) = {gCc' v (Aq'l (c) + •oo) (24) v v • 

where we label the coordinates (r', z') of the ledge sources 
on the 'c' faces (c). An analogous equation holds for the 
'a' face. Using equations (23) and (24), we can solve for 
the fluxes and express them as functions of a' c' F, {ga, V' V • 

{gc, ao•, and the positions of the ledge sources in a manner 
analogous to that presented in the thin disk section. 

Following steps similar to those in our spherical crystal 
calculation and assuming that heat conduction into the crys- 
tal can be neglected, it is straightforward to show that 

v 

{gc ' qøøJ, •øø Pice dc 
F} = = •--, (25) 

1 + {gaa'totha (l-') + {gCC'tothC (l-') Pair dt 
' ' +c' withc' =-c/a. ' An analogous where c tot--c v th th a th- 

formula holds for the 'a' face, with {ga instead of {gc in the 
numerator. The second and third term in the denominator of 

equation (25) is the total volume impedance divided by the 
surface impedance for the 'c' faces. (In ice clouds C'th, a'th 

a' is usually much smaller than c' v, v so that the thermal 
impedance term can be neglected in this case.) 
Equation (25) together with a model of {ga(os) and 
{gc (as) allow us to calculate the growth rate of each face. 
These equations constitute the new model for vapor growth 
and sublimation of a cylindrical crystal. 

It is useful to point out the similarities in the expressions 
for the vapor flux to various shaped crystals. For this com- 
parison we divide the fluxes by the factor qoor•/4oo• and 
present the normalized fluxes in Table 1 for a stationary 
crystal. The table shows that in all cases the net vapor flux 
is diminished by a factor of the form {g/( 1 + {ga'h), where 
the {ga'h terms in each denominator is the ratio of the sur- 

face to the volume impedance. The sphere and thin disk are 
special cases for a crystal with only 1 "type" of face, while 
the finite cylinder is a special case of a crystal with 2 
"types" of faces. Equation (25) can thus be generalized to 
the case of an arbitrary number of independent faces. 

To obtain the growth rate, {go, a must be known in terms 
of the environmental conditions. First we must find the 

supersaturation at the crystal surface. For edge ledge 
sources, setting equation (24) equal to equation (25) 

o• ((a)) = 
1 + {gaa'totha (F) + {gCc'tot hc (l-') (26) 

: . 

As was the case for a spherical crystal (equation (15)), the 
solution to equation (26) when substituted in the expres- 
sions for {go, a ((5s) gives the surface impedances as a func- 
tion of the ambient conditions. 

The fluxes to the crystal in the uniform flux model are 
given by equation (25), using the solutions to equation (26) 
for {gc and {ga. When F = {gc/{ga (the condition for steady 
state growth, as we show in section 5.1, the resulting mass 
uptake is 

v 

dM PairlJooqoo• (2•rac) ß 3{g a 
-- = , (27) 
dt 1 + {gaa'to t { h a (I') + F2h c (F) } 

where M is the crystal mass. 

4.3. Predicted Growth Rates 

We now compare the predictions of our model to those 
of the capacitance model to delineate the parameter regimes 
in which the two give the same results and those in which 

Table 1. Normalized Vapor Flux for Various Crystal Shapes 

Sphere Thin Disk 

1 + {ga'to t 1 + {ga'toth 

Finite Cylinder 

1 + {gaa'totha (l-') + {gCC'tothC 

Equation (10) Equation (20) Equation (25) 
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Figure 6. Comparison of the total steady state mass uptake rate for the uniform flux finite cylinder 
model (equation (27)) to that predicted by the ellipsoidal capacitance model (equation (28)). The 
numbers give the ratio of the vapor impedance to the surface impedance. 

their results are different. The surface impedance is consid- 
ered negligible for all supersaturations in the capacitance 
model, whereas in our model the minimum possible value 
of 1/o• is 1. 

We first compare the mass uptake rate predicted from 
equation (27) for a finite cylinder with that predicted from 
the capacitance model for an ellipsoid of the same aspect 
ratio. Since thermal impedance is usually neglected in the 
capacitance model, we neglect it in our model for this com- 
parison. The rate of mass uptake of an ice crystal in the 
capacitance model is [see, e.g., Wallace and Hobbs, 1977] 

I - d._M - Pair{J•q• (4nacCap/ca'v), (28) dt cap 

which is to be compared with equation (27). Cap is the 
capacitance (in esu) for a conductor with the same shape as 
the crystal. The capacitance of an ellipsoid can be com- 
puted exactly as a function of the aspect ratio F [Morse and 
Feshback, 1953.] 

The results of this comparison are shown in Figure 6. As 
was the case for spherical crystals (see equation (12)), 
when the surface impedance is much smaller than the vol- 
ume impedance, the mixing ratio adjacent to the surface is 
very close to equilibrium (although it remains nonuniform), 
so the mass uptake in the finite cylinder and ellipsoid 
capacitance models are in close agreement in this limit. 
Since a finite cylinder has a larger surface area than an 
ellipsoid for a given value of c and a, the finite cylinder uni- 
form flux mass uptake can exceed that from the ellipsoidal 
capacitance model for small surface impedances. However, 
the capacitance model significantly overestimates the mass 
uptake when the surface impedance is significantly larger 
than the vapor impedance. Note that o• (a'c) rises with o $ 

and thus with oo•. Hence for high oo• or large crystals the 
ratio of volume to surface impedance is large and the capac- 
itance and the finite cylinder model lead to very similar g/s 
predictions. Therefore the capacitance model for mass 
uptake is probably accurate in mixed-phase clouds (except 
near 0øC), where crystal size and supersaturation are both 
large, but it is not likely to be applicable in ice phase 

clouds. In and near ice phase clouds the capacitance model 
probably overestimates the g/s rates. This is illustrated in 
Figure 7 which shows how the linear growth rates predicted 
for F =1 in the uniform flux model vary with condensation 
coefficient functions (equation (14)). Note that for large n 
the flux is significantly reduced even for •, > 

4.4. Predicted Sublimation Rates 

Ledge source mechanisms for growth can also operate as 
ledge sources for sublimation. (Instead of nucleating 
islands, holes are nucleated.) In addition, the crystal edges 
can serve as ledge sources for sublimation. Physically, we 
expect that the generation of ledges from the edge is similar 
to a nucleation process although the critical undersaturation 
might be very low. Impurities in or on the surface could 
increase this critical undersaturation [Surek, 1972; Nelson, 
1994]. If the undersaturation is significantly larger than the 
critical value, then the edges of the crystal will round and 

1•__ 0•---- 1 
n=l 

0.8 

6(n) 0.6 

0.4 

0.2 

,' n = 100 
ß 

ß 
ß 

ß 

/ 

/ 
/ 

1 2 3 4 5 

oo 1 

Figure 7. Growth rates in the uniform flux model with n 
and • defined in equation (14). The vapor impedance is 
set to 10, and o• c = o• a. 
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c=10%, a=11%, nC=10, na=10, and an Initial Table 2. Time in Seconds for a Columnar Crystal With 

Size of c=60 gm, a=20 gm to Sublimate to One Half of Its Initial Size for Various Undersaturations 

Unders aturation 5 % 10% 20% 50% 

Finite cylinder uniform flux 82000 2710 640 256 

Ellipsoidal capacitance 1435 717 359 143 

the uniform flux boundary condition no longer applies. 
When this is not the case, the sublimation process is simply 
the reverse of the growth process, and the technique given 
above applies. Shown in Table 2 are the ice crystal lifetimes 
in the ellipsoidal capacitance model and the finite cylinder 
uniform flux calculation. A large critical undersaturation 
can significantly increase the crystal lifetimes. 

5. Crystal Shape 

5.1. Crystal Habit in Uniform Growth 

For ledge sources at the edge, equation (25) gives the 
ratio of the growth rate on the 'c' (basal) face to that on the 
'a' (prism) face 

dc o: c 

d• = •a (29) 
Physically, this is because the rate of ledge nucleation (and 
hence growth rate) is proportional to the excess number of 
molecules striking the surface (as) times the probability 
of growing into the crystal (o:), that is, o:.o s (equation 
(24)). For edge growth, o s at the ledge sources is the same 
for both faces, so that the ratio of the growth rates is simply 
the ratio of the condensation coefficients. This ratio is, in 
general, a function of temperature, crystal size, and the 
ambient supersaturation. In practice, o: c'a (a s) could be 
derived from experiment by fitting crystal g/s rates mea- 
sured in a pure vapor of known supersaturation (where dif- 
fusive and thermal impedances would be negligible) to this 
model. These values could be inserted into the relation 

between a s and 0oo (equation (26)). The fluxes to each face 
would then be determined and the ratio in equation (29) 
could be deduced for a known set of ambient conditions. 

If o: c' a (ijs) were known, equation (29) could be inte- 
grated to obtain F as a function of c or a. One application 
of the results might be a comparison with the observations 
of Auer and Veal [1970] which were fit to the function 

c = g. a • (30) 
where g and [5 are temperature dependent. However, it is 
not clear this comparison would be useful: equation (30) 
was fit to data which include a significant fraction of crys- 
tals with dimensions greater than 100 gm, sizes at which 
ventilation might affect the shape. It is also not known if all 
of the observed crystals of a given type grew at the same 
ambient supersaturation. Chen and Lamb [1994] have 
derived equation (30) from a "mass distribution hypothesis" 

which was not derived from a crystal growth model and dif- 
fers from equation (29). In our model, crystal shape 
changes as a function of time for 3 reasons: (1) (xc/rx a 
depends on the surface supersaturation (Figure 1), which 
generally decreases with crystal size (equation (26)); (2) 
the initial crystal shape (F) is generally not equal to 
dc! da so that the shape will change until F =dc! da; and 
(3) a crystal eventually hollows (section 6.3 and Appendix 
C), thus changing the total flux to the hollowed faces. 
Examples of shape evolution produced by our model are 
shown in Figure 8. 

If the vapor diffusivity is increased for a fixed ooo (as in 
the experiments of Gonda [1980]) then o s increases 
(equation (12)), so (i •, •a • 1 and use of equation (29) 
leads to the prediction dc/da--> 1. This is what Gonda 
observed. 

5.2. Predicted Limits on Uniform Growth 

In this section we show that the requirements of uniform 
growth (i.e., growth maintaining flat faces) constrain the 
ratio of surface impedance to volume impedances. This 
constraint is independent of the model used for the surface 
impedance. We present arguments suggesting that hollow- 
ing in crystals (also known as lacunary growth and hopper 
development), often observed in the atmosphere, occurs 
when these constraints are not met. The growth of hollow 
crystals is discussed in Appendix C. 
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Figure 8. Changing crystal shapes during growth. Top 
a = 0.5,0.1,1 and nC'a 2,4 Bottom curve: ooo, o•, IJ 1 , = . 
a = 0.5, 0.5, 1 and n •' a 3, 4 (equation curve: %., o•, IJ 1 , = 

(]4)). 
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To understand how hollowing occurs, one must first 
understand'how uniform (flat faced) growth occurs. On the 
faster growing faces the surface supersaturation is greatest 
at the edge (see Figure 9). Therefore there are more vapor 
molecules striking the surface near the edge than near the 
face center, and if the surface ledges were equally spaced 
across the face then growth would be faster near the edge 
than near the center, resulting in a hollow crystal. This 
"destabilizing" effect is due to vapor diffusion and gener- 
ally increases with the vapor impedance. However, the 
ledges are not evenly spaced across the face. The edge 
region, as a result of its having a larger supersaturation, is 
the preferred nucleation site. A ledge once nucleated there 
travels inward toward the face center. After traveling a cer- 
tain distance (which is smaller for a larger supersaturation), 
a new ledge is nucleated. This process of producing equally 
spaced ledges near the edge results in a train of ledges trav- 
eling in toward the center of the face where the supersatura- 
tion is lower [Frank, 1982]. Since the ledge velocity is 
proportional to the local supersaturation, the ledges slow 
down as they approach the center. Like cars approaching a 
stop light, the ledges become closer together near the center 
and therefore collect a larger fraction of the incident vapor 
molecules. (See Figure 3.) The closing up of the ledges 
compensates for the decreasing local supersaturation and 
"stabilizes" uniform growth. The extent to which the sur- 
face ledges can stabilize uniform growth depends on the 
surface impedance. A large surface impedance means that 
the ledges are far apart at the edge and hence the ledges 
near the center need not be close together. In this case, 
growth is uniform across the face. From equation (24) this 
means that 

ct. o s = uniform. (31) 

If the ambient supersaturation is increased (smaller surface 

Figure 9. Schematic of the mixing ratio contours around 
an isometrically growing ice crystal (left) and an ice crystal 
growing fastest on its basal faces (right). Mixing ratio 
decreases as contours approach the surface. 

L• œ? 

Figure 10. Schematic showing top and side view of a 
crystal hollowing on the 'c' faces as it grows (nonuniform 
growth). 

impedance), the ledges near the center must become more 
efficient at collecting molecules. However, there are limits 
to this efficiency. In particular, the ledges cannot collect 
more molecules than strike the surface. Since c• must 

always be less than 1, uniform growth becomes impossible 
when the condition equation (31) would require 
c• (center) > 1. In this case, the center must grow more 
slowly than the edge. Under these conditions the crystal is 
hollowing. An example is shown in Figure 10. 

At a given ambient supersaturation the difference in sur- 
face supersaturation between face center and edge increases 
with crystal size (and thus with vapor impedance), so that a 
larger ledge spacing at the edge (larger surface impedance) 
is needed for uniform growth on larger crystals. Therefore 
the uniform growth constraint sets a lower limit on the ratio 
of surface impedance to vapor impedance. From Figure 9 
this relation is expected to depend on the relative rates of 
growth on the basal and prism faces. This is shown in Fig- 
ures 11 and 12. For platelike growth the hollowing should 
occur on the 'a' faces (Figure 11), while for columnlike 
growth, hollowing is more likely on the 'c' faces (Figure 
12). 

The meaning of Figure 11 can be understood with the 
following example: Consider a crystal which begins grow- 
ing at F = 1 (point i in the figure). As it grows, the vapor 
impedance (a'v) generally increases faster than the surface 
impedance. If da/dt > dc/dt (o[ a > (g c) , its habit becomes 
platelike, so it follows a curve similar to the dashed curve 
shown in the figure. Near the point marked h, the surface 
impedance can no longer compensate for the difference in 
surface supersaturation between the edge and the center of 
the 'a' face and the crystal begins to hollow on that face. 
This process of nonuniform growth might continue, eventu- 
ally producing sector plates or dendrites [Frank, 1982]. 

If instead the crystal grows into a columnar habit, it fol- 
lows a curve like the dashed curve in Figure 12. The growth 
might continue in the nonuniform regime, eventually result- 
ing in needle growth. 

The dotted curves in Figures 11 and 12 indicate where 
hollowing would occur if F = 1 during growth 
(dc/dt = da/dt). The maximum ratio of vapor to surface 

impedance for uniform growth is 4.0 on the 'c' face and 5.6 
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• nonuniform growth 

• 2 
• uniform growth 

o0.5 • 
- i 

0.'02 ' b.'o•' '6'z r 0[2 ' '0'5 .... 
Figure 11. Regimes of uniform and nonuniform growth 
on the 'a' face. Top curve: boundary between uniform and 
nonuniform growth for a large crystal growing at 
dc/da = F that hollows at a'- 100. Bottom curve' 

boundary for a crystal growing at dc/da = F/4 that hol- 
lows at a' = 50. The arrows and symbols are discussed in 
the text. 

on the 'a' face. Since the surface and vapor impedances are 
the same on both faces in this case (eqs. (25) and (29)), the 
basal face should hollow during growth before the prism 
face for isometric (F = 1 ) crystals. This is due to the fact 
that the centers of the basal faces are more "surrounded" by 
regions of uniform vapor sink than the centers of the prism 
faces, so that the local mixing ratio in the center of the basal 
faces is reduced to a greater extent, thus requiring a greater 
surface impedance for uniform growth. This result is in 
agreement with data from Takahashi et al. [ 1991 ]. 

Mason [1993] predicts that hollowing is independent of 
growth rate and occurs when the size of a face becomes 
larger than some critical value. This appears to be inconsis- 
tent with the habit diagram [see, for instance, Mason, 1993, 
Figure 1] and experimental results from Colbeck [1983] 
since these authors show hollow crystals only at large 
supersaturations. (Unfortunately, the crystal sizes in their 
diagrams were not noted.) In laboratory studies by one of 
us (JN), we have observed that when different prism faces 
grow at different rates, the faster growing (and generally, 
smaller area) faces hollow first, as shown in Figure 13. This 
is in direct contradiction to Mason's prediction but consis- 
tent with ours. 

6. Discussion 

The goal of this work was to derive a physically consis- 
tent but computationally useful formalism for the study of 
the evolution of three-dimensional ice crystals in air. In our 
new formalism we assume that one growth or sublimation 
mechanism is active over the entire crystal surface. The 
vapor and heat transport to and from the surface then act in 
series with this surface growth mechanism. The vapor mix- 
ing ratio (and thus the surface supersaturation) varies over 
the surface. We have assumed that ledges are generated at 
some point on each face, either because there are defects or 
dislocations or other nucleation sites there. The ledges 
(which contain the most likely growth sites) then spread out 
over the face. The rate of production of ledges at the gener- 

ation point thus controls the spacing of ledges all over the 
face. We assume that as the ledges spread from their point 
of origin to points of different local supersaturation, their 
spreading velocity changes, and their spacing thus changes 
also (so that the density of growth sites changes) in such a 
way as to maintain a uniform rate of growth over the face. 
The relationship between o• and •s is determined at the 
ledge source by the mechanism producing the ledges. (See, 
for example, eq (14).) This constraint enables us to calcu- 
late the flux at the ledge generation point on each face and 
thus to know the flux everywhere on the face. We assume 
that this description can apply to sublimation as well as to 
growth, but the ledge generation mechanisms and positions 
may be different in the two cases. 

The formalism we have derived allows us to compute g/s 
rates and the conditions for uniform growth of finite cylin- 
drical crystals in terms of surface parameters that must ulti- 
mately be derived from experiment. 

6.1. Laboratory Observations of Ice Crystal G/S Rates 

We have presented theoretical arguments showing that 
surface processes limit g/s rates and growth character of 
crystals under certain environmental conditions. Direct ver- 
ification for this contention is very difficult to acquire from 
experimental results published in the literature, but we now 
examine data from laboratory and field experiments that 
indirectly support this conclusion. We show there are wide 
variations in g/s behavior from the various laboratory 
experiments (and we know of none performed in conditions 
applicable to cirrus) but that in all the experiments there is 
evidence that the surface impedance plays a very important 
role in determining the evolution of the crystals. 

6.1.1. G/S rates in air. There have been three types 
of laboratory measurements of g/s rates in air; those in 
which the crystals are situated on a substrate, those in 
which they are suspended from/on a fiber, and those in 
which they are in free-fall. We now discuss each type 
briefly in turn. 

10. 

nonuniform growth 

, uniform growth 

' 

Figure 12. Regimes of uniform and nonuniform growth 
on the 'c' faces. Top curve: boundary between uniform and 
nonuniform growth for a large crystal growing at 
dc/da = F that hollows at c' = 100. Bottom curve: 

boundary for a crystal growing at dc/da = 4F that hol- 
lows at c' = 50. The arrows and circles are discussed in 
the text. 
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Figure 13. Platelike ice crystal grown in nearly I atmosphere of air. The crystal began growth at 
the tip of the glass capillary shown penetrating the crystal from the bottom. The 2 prism faces on 
the bottom grew faster (they are farther from their point of origin.) The fact that they hollowed first 
even though their areas are smaller than the neighboring prism faces is in direct contradiction to the 
prediction of Mason [ 1993]. 

The only experimental data on ice crystal growth rates in 
air at a range of supersaturations for small (<100 lum) hex- 
agonally shaped ice crystals are those of Shaw and Mason 
[1955] (hereafter referred to as SM). Growing crystals on a 
metal substrate, they found that the crystal growth rates 
were of the form 

da kaOo• dc kc •2 
dt a ' dt c 

(32) 

where k•,• depended only on temperature [Shaw, 1955]. 
Equation (32) also held during sublimation with 
ka c -"> -ka c' (Note that shielding of one crystal, or crystal 
fa•e by n•'ighboring crystals, or interaction through the 
vapor, probably influenced the SM measurements because 
it can significantly reduce g/s rates even at relatively large 
crystal separations [Labowsky, 1976].) At very large under- 
saturations (depending on temperature and crystal) the sub- 
limation rate increased dramatically and the crystals 
developed rounded edges. This behavior is expected since 
at low undersaturations, sublimation is believed to be due to 
the motion of ledges originating at fixed sources (crystal 
defects) on the interior of a face (as is the case at small 
supersaturations), while at larger undersaturations, the main 
source of ledges is expected to be from the edges. Them 
was noticeable variation in growth rate among crystals 

growing under the same conditions, and the growth rate on 
a given crystal face was observed to change by as much as 
50% without a change in the surrounding conditions. These 
two observations suggest that the surface impedance, which 
could differ for different crystals even when they are in 
identical environments, was larger than the vapor imped- 
ance. Also note that the dependence of dc/dt and da/dt on 
•2 instead of • is suggestive of a strong role of the sur- 
face impedance, which is highly dependent on supersatura- 
tion. (See Figure 1.) 

Gonda and Koike [1982, 1983] grew ice crystals on a 
glass substrate in one atmosphere of air and found, like SM, 
that the growth rate increased faster than linearly with goo- 
In both of these cases, at all temperatures and environmen- 
tal supersaturations the observed g/s rates were less than 1./ 
2 of the rates predicted using equation (25) with negligible 
surface impedance. The surface impedance was probably 
an important factor reducing the g/s rates. 

Keller and Hallett [1982], and Alena et al. [1990] exam- 
ined ice crystal growth on a suspended fiber and found that 
da/dt o• on with n > 1 for supersaturations less than 
approximately liquid water saturation. This is consistent 
with the observations of both SM and those of Gonda and 

Koike and is an indication of a strong influence of surface 
impedance on growth. Rottner and Vali [1974] grew ice 
crystals on a fiber in a diffusion chamber and found that the 
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Table A1. List of Symbols 

Symbol [dimension] Meaning First Appears 

a,c [m] crystal radius, 1/2 of crystal length Figure 4 

a', c' dimensionless volume impedances (9), (21) 

D• [m2/s] 

Fv • kg (H20).• kg•a'• -[' F'v 

F h [W/m 2 s] 

h a, h c 

designates the 2 types of faces 

diffusion constant of vapor in gas 

vapor flux, dimensionless value 

Figure 4 

(2) 

(2), (22) 

heat flux (7) 

dimensionless mixing ratios for fluxes to 'a', 'c' faces (23) 

1 [J/molecule], l' latent heat of sublimation, dimensionless latent heat (8), (9) 

m, M [Kg] 

n a, n c 

mass of a water molecule, crystal 

condensation coefficient parameter 

(8), (27) 

(14) 

•_.g (H 20)• 
qs, qeq /- •-i•11• 'l surface, equilibrium mixing ratio (1) 

T, T s [K] 

r• [m/s] 

gas, crystal temperatures (4) 

mean vapor molecule speed (6) 

condensation coefficient function (6) 

Kg [J/K m s] 

Aq' 

thermal conductivity of air (7) 

shifted, dimensionless mixing ratio (16) 

Pair' Pice [Kg/m3] 

aspect ratio (21 ) 

density of air, ice (8), (13) 

condensation coefficient parameter 

ambient, surface supersaturation 

(14) 

(6), (11) 

growth rate was significantly lower than the capacitance 
model estimates, even at water saturation. However, in this 
type of experiment, shielding probably reduced the growth 
rates since there were many crystals along the fiber. 

Colbeck [1983] investigated the growth of large ice crys- 
tals on a hair at low supersaturations. The growth rate was 
less than that predicted from the capacitance model, espe- 
cially at lower supersaturations and lower temperatures.' At 
a given temperature the growth rate was closer to the capac- 
itance prediction when the supersaturation was higher, as 
we predict. 

Takahashi et al. [1991] found that the growth rates of 
freely falling crystals at water saturation were within a lhc- 
tor of 2 of the rates predicted by the ellipsoidal capacitance 
model, i.e., significantly higher than those of the substrate- 
grown ice crystals for the same conditions. Theoretically, as 
pointed out earlier, we expect that the capacitance model 
should be a better approximation as the supersaturation 
increases. 

6.1.2. G/S rates in pure water vapor. There have 
been several experiments on the growth rate of ice in a pure 

vapor environment [Lamb and Scott, 1972; Beckmann and 
Lacmann, 1982; Sei and Gonda, 1989]. In all of these stud- 
ies, large (~100 !.tm) crystals were grown on a substrate, 
and therefore heat conduction effects reduced the growth 
rates considerably [Nelson, 1993]. It is also apparent that 
ice crystals grown on a substrate grow by a dislocation 
mechanism. Since freely growing ice crystals (i.e. without 
influence from another surface) appear to grow without dis- 
locations [McKnight and Hallett, 1978; Mizuno, 1978; 
Frank, 1982], care is needed when extrapolating results 
inferred from substrate-based experiments to atmospheric 
ice crystal growth. 

6.2. Observations of Ice Crystal Hollowing 

While there are a number of field studies of cirrus micro- 

physics in the literature, [e.g., Heymsfield and Platt, 1984; 
Heymsfield, 1977'; Sassen et al., 1989a; Platt et a/.,1989; 
Arnott et a/.,1994; StrOm and Heintzenberg, 1994], instru- 
mental limitations have precluded the collection of the 
dynamical and microphysical information needed to deduce 
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g/s rates of small crystals in and near clouds. However, 
some information on surface parameters can be inferred 
from examination of crystal shapes. 

Figures 11 and 12 show that according to our model in 
steady state growth the surface impedance must be larger 
than approximately 1/5th of the vapor impedance on at least 
one face in order for crystals to grow with flat faces. (This 
fraction is larger for crystals with a larger growth rate 
anisotropy.) In some cirrus clouds, uniformly growing crys- 
tals are relatively common [Heymsfield and Platt, 1984; 
Miloshevich and Heymsfield, 1992]. When both solid and 
hollow columns are observed in cirrus, the conditions may 
be such that the crystals are growing near the border 
between uniform and nonuniform growth and therefore the 
surface impedance is roughly equal to the magnitude of the 
vapor impedance. Note, however, that it is also possible that 
the hollowing occurred during the early phase of cloud for- 
mation when the supersaturation was higher due to either 
the existence of supercooled drops or to a lower crystal 
concentration. Also, it is difficult to distinguish between 
hollow crystals and crystals with completely enclosed voids 
when the crystals are small. 

Gonda and Koike [1982, 1983] observed ice crystals 
beginning to hollow at small sizes, but at larger sizes, the 
growth became uniform again. For these crystals the growth 
rates were much less than those predicted on the basis of 
the capacitance model, suggesting that the surface imped- 
ance was twice to 9 times the magnitude of the vapor 
impedance. The resulting crystals had flat faces but voids in 
their interior. We have made similar observations in our lab- 

oratory. These features are not uncommon in ice crystals 
grown in the atmosphere. 

Table B1. Values of h a (I"), h c (F) 

F h a (I") h c (r) 

0.01 0.0233 62.0 

0.05 0.0900 11.7 

0.1 0.155 5.62 

0.2 0.258 2.65 

0.25 0.300 2.07 

0.27 0.316 1.90 

0.5 0.469 0.959 

0.82 0.622 0.554 

1 0.690 0.445 

2 0.963 0.208 

2.5 1.06 0.164 

2.7 1.09 0.151 

5 1.38 

10 1.70 

20 2.05 

0.0781 

0.0374 

0.0184 

Fa---• 

F c 

2a 

0 F c 

F c 0 F c 

•--F a 

Figure 14. A hollow column (left) has uniform growth on 
the 'a' face and only a small region of the 'c' face (fight). 
We will assume that the flux to the region within a. x of 
the 'c' face center is zero. 

In the last two sections we have examined three types of 
observations of ice crystals in order to estimate the magni- 
tude of the surface impedance during ice crystal growth and 
sublimation. Most are consistent with the hypothesis that 
surface impedance is comparable to vapor impedance under 
the conditions examined except at high supersaturations 
and large crystal sizes. Although large experimental uncer- 
tainties presently prevent a truly quantitative formulation of 
vapor g/s rates of small ice crystals, the formalism we have 
presented here presents the theoretical basis for examina- 
tion of the evolution of three-dimensional crystals i.n air. 

7. Applications 

Our new model is quite general. For its application we 
depend on knowledge of the relationship between surface 
impedance and local supersaturation. The form of this rela- 
tionship can be derived from a model of the surface (for 
example, see equation (14)), but any such relationship con- 
tains parameters that must ultimately be derived from 
experiment. We have shown that surface processes play 
important roles in limiting the g/s rates and aspect ratios of 
atmospheric ice crystals under conditions expected in and 
near fully glaciated clouds. Crystals in this part of the atmo- 
sphere play important roles in radiative and chemical pro- 
cesses, and these roles are determined largely by the shape 
and sizes of the crystals as well as the surface structure. 
There is laboratory evidence that small concentrations of 
gaseous impurities alter the crystal growth shape [Anderson 
et a/.,1969; Hallett and Mason, 1958; Nakaya et a/.,1958; 
Neustaedter and Gallily, 1987; Odencrantz, 1968; Schaefer, 
1949]. The uniform flux model (as opposed to the capaci- 
tance model) readily lends itself to exploration of these 
impurity-induced modifications of surface impedance [Nel- 
son, 1994]. It has been suggested that gas phase impurities 
hinder sublimation in the upper troposphere [Peter et 
a/.,1994]. Thus further theoretical and experimental explo- 
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ration of crystal evolution under these conditions is needed 
for further progress on these important topics and directed 
field studies would aid in investigating the applicability of 
both the capacitance and the uniform flux models to the 
atmosphere. Laboratory experiments in progress lend sup- 
port to the uniform flux model presented here and our 
results will be described in future publications. 

Appendix A: Symbols 

Appendix B: Mixing Ratio Functions hc' a 

The method used here to solve for Aq' is to split up the 
region surrounding the crystal into subregions chosen in 
such a way as to permit use of the method of separation of 
variables. Along the common boundaries between 2 regions 
the vapor mixing ratio and gradient of the vapor mixing 
ratio are set equal to each other. The functions h c' a which 
appear in equation (23) are defined in terms of matrix oper- 
ations on the eigenvectors in each region and will not be 
given here except for certain positions on the crystal sur- 
face. It can be shown that a crystal with n independent faces 
will have n terms on the RHS of equation (23), one for 
each F'. A complete description of this method is found in 
the work of Nelson 1994. Because of the large sizes of the 
matrices involved, h c'a were calculated explicitly at dis- 
crete values of F only. Values of the functions 
h a (F), h c (F) are given below. Approximate analytic fits 
are 

1.15 0.85 

h c (F) -- • + 2nF 

ß (1 - tanh [0.947. log•o [F] + 0.477] ) 

h a (1`) = 0.663.1Oglo [ 1 + 1.85 ß I '0'894] 0.937 ß (B1) 

Appendix C: Growth of Hollow Crystals 

The technique developed above for solid crystals can 
also be used to describe the growth of very hollow crystals 
in an approximate manner. Assume that on the 'c' faces of a 
hollow column, growth occurs only along a small ring of 
width a ( 1 - x) (Figure 14). We take advantage of the lin- 
earity of the problem to solve for the growth rate using 
superposition of solutionsß If x = 1, the resulting mixing 
ratio Aqh is nearly equal to the value obtained by subtract- 
ing the mixing ratio Aqo (finite cylinder with uniform flux 
F c on the 'c' face and no flux on the 'a' face, aspect ratio 
F/x) from the mixing ratio Aq• of the solid cylinder with 
uniform fluxes F c, F a, aspect ratio 1`. That is, eq (23) is 
replaced by 

Aqh = -- F 'c (h c (r) - h c (F/x)) - F'ah a (1`). (c1) 

Thus the uniform flux model also applies to very hollow 
crystals with the substitution h c (1`) --> h• --h c (F) - 
h c (F/x). Since h c (F) -- g/F (see equation (B1)) where g 

c = h c h c. is nearly independent of F, then h h ( 1 - x) << 
If the ledge sources are on the edge for both faces before 

hollowing, then this change in mixing ratio will have little 
effect on dc/da after hollowing. However, crystal hollow- 
ing can change the evolution of crystal aspect ratios. Con- 
sider a crystal on which o•c/o• a is large initially. The surface 
mixing ratio (assuming no hollowing) then becomes largest 
in the center of the 'a' face (see Figure 9). Since the 'a' face 
now has a larger mixing ratio, it can grow faster and thus 
reduce the magnitude of the growth rate anisotropy 
(dc/da<o•qo•a). Hollowing changes this picture by 
increasing the magnitude of the mixing ratio at the edge. 
This allows dc/da = o•/o[ a to remain large, resulting in a 
greater aspect ratio for the hollow crystal than for the solid 
one. This argument applies equally well to hollowing on the 
'a' face. Thus hollowing is an important process for the for- 
mation of crystals with large aspect ratios. 
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