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When a crystal is grown or evaporated on a substrate, temperature gradients are set up in the crystal, The surface temperature
of the crystal becomes non-uniform and differs from the substrate temperature. The consequences of this non-uniformity in surface
temperature are analyzed for several crystal geometries. It is shown that the non-uniformity in surface temperature may drastically
affect the growth rate, step spacing, and growth shape. This analysis is applied to recent experiments on ice and rare gas crystals.

1. Introduction

Crystals have been grown and evaporated on
substrates to study many different surface pro-
cesses. When the growth units (atoms or
molecules) incorporate themselves into, or evapo-
rate from the crystal, the latent heat flux must be
conducted to, or from the underlying substrate.
In this paper, we will use the term surface heat-
ing to describe this heating process for the case of
growth and evaporation. Since the time scale for
temperature changes in a typical laboratory crys-
tal is much smaller than the time scale for most
experiments, we will assume a steady state has
been achieved. The processes that are affected by
surface heating are those related to growth and
evaporation rates. These include: measurements
of the condensation coefficient [1-14,86], step
kinetics [1,8,9,15-18], and growth shapes [19-25].

The structure of this paper is as follows: in
section 2, surface heating effects on the growth /
evaporation rates are calculated, in section 3,
surface heating effects on the step kinetice arc
calculated, and in section 4 we will discuss .1ow
surface heating alters the growth shape. Through-
out this paper, we will assume the growth shape
is initially given.

2. Growth / evaporation rate
2.1. One-dimensional hear conduction

First consider the growth normal to the sub-
strate of a crystal with surface temperature 7
and thickness L (fig. 1). The source crystal
serves as a source/sink of growth units. It has a
surface temperature 7, and thickness L. The
heat flux to a crystal surface is the latent heat per
molecule multiplied by the flux of vapor molccules
to that surface (the heat flux into the vapor is
negligible when L /A < chamber dimensions/
Avapor- @nd this condition will be assumed). The
heat flux into the crystal is equal to the tempera-
ture gradient at the crystal surface multiplied by

the thermal conductivity of the crystal A:

d
A;T =HR,_ /{2, (n
where R is the growth rate normal to the sur-
face, H is the latent heat per molecule, and (2 is
the volume occupied by one molecule in the
crystal. A similar equation holds for the source
crystal. For simplicity, assume that the vapor flux
to the surface is determined by the Hertz—Knud-
sen equation. For the systems of interest for this
study (ice and rare gas solids), the Hertz—Knud-

0022-0248 /93 /$06.00 © 1993 — Elsevier Science Publishers B.V. All rights reserved



J. Nelson / Heat conduction problems in crystal growth from the vapor 539

\ Tso
source crystal Ls A
T, A
‘\ chamber §s
Tz T A
monitored crystal | L T A
Y™ __ _mo

Fig. 1. Growth of a semi-infinite crystal. T and A represent
temperatures and surface areas exposed to the vapor respec-
tively.

sen equation is expected to be correct within a
factor of 2 [26-32,72-76]. If surface heating/ coo-
ling effects are significant, the modifications due
to this factor will be insignificant. It is convenient
to define an effective temperature T such that
the chamber vapor pressure = p(T.), p denoting
the saturated vapor pressure. Since many experi-
ments are performed at low super-/ undersatura-
tion, we will expand T, about T to first order:

B\
RmzﬂHLmam(Teff— Tm)’ (2)
L ;(Tm(])

== N mb] a2
Bm_ A p(TmO) 4Tm[) B M (3)

Table 1

Therefore,
d A
/\E;Tm=BmL_mam(Teff_ Tm)’ (4)

where ¥(T)=y8kT/mm is the vapor mean
molecular speed, m is the mass of the condensing
or evaporating molecule, k£ is Boltzmann’s con-
stant, 8 = H/kT, and «!, is the probability that
an incident molecule beomes incorporated into
the monitored crystal lattice after striking the
crystal surface (commonly called the condensa-
tion coefficient). If the heat must conduct through
additional layers before reaching the thermome-
ter, one should replace L, /A with LL? /A", the
superscript n labeling the layer.

In the terrace—ledge—kink (TLK) model [35-
39] of crystal growth, a! is a product of two
factors. The first factor is the sticking coefficient,
which may be estimated using a trajectory model
[33,34]. The second factor may be calculated us-
ing a surface diffusion model [35-39], or a Monte
Carlo calculation [40,41]. If the surface is rough,
the second factor equals one. The sticking coeffi-
cient should be approximately one if the surface
adsorption energy is larger than the incident ki-
netic energy. For a vapor molecule incident on its
own solid, this is usually the case. In this paper, it
will be assumed to be 1. Note that the heat flux,

Values of the parameter B, for a few substances; data are from the following sources: metals [67,69], organic crystals [3,68], silicon
[68,69], rare gas solids [57,68], ice [43,70,71]; Ty, = T, has been assumed and T indicates the melting temperature

Substance A (W/m-K) p (Pa) v (m/s) B B,, (100 m)
Krypton 0.4 (80K) 0.4x103 141.9 14.6 9.1

0.25 (T, =116 K) 68.0x 103 170.8 1.2 1199.9
Xenon 0.75 (100 K) 0.1x103 126.7 82 0.267

0.25 (T, =161 K) 74.2x 103 160.8 1.2 885.7
Naphthalene 0.71 (T = 351 K) 792.0 240.4 17.8 5.87
Benzene 0.85(T. =278K) 4116.1 274.0 8.1 735
Ice 3.3 (193K) 0.055 476.4 31.6 1.0%x1073

2.1 (T =273K) 611.2 566.5 22.5 7.47
Silicon 22.0 (1320K) 22.0 995.6 6.7 7.8x1074
Lead 320 (T =600 K) 0.055 247.1 16.9 49x10°°
Gold 250 (1300 K) 89.1 373.0 14.1 49x10~*
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and hence the vapor flux, is proportional to the
temperature difference between an effective tem-
perature (7,;) and the surface of the monitored
growing/ evaporating crystal (7). However, in
an experiment, the temperatures at the substrate
(T, . T, or slightly below the substrate (7, in
fig. 5), of the source crystal and the monitored
crystal are measured. Therefore, the observed
growth rate will be less than that given by eq. (2)
with 7., =T,, and T, =T, by a factor

st m ml)»
1= (T = T)/(Ty— Tro)s (5)

with T=T,. We will see in the next section that,
when T varies along the surface, f becomes a
convenient variable for describing the heat con-
duction process. For a semi-infinite slab (or
equivalently, a finite slab with insulated sides),
the temperature gradient is constant throughout
the crystal, and is in the direction normal to the
surface. Solving (4), and a similar equation for

the source crystal, and using the definition (5),

- a:-nAmL%Bm h
i=|1+a,B,+ ———"""(1+a'B,)
m m (X:A\LmB\ R S

(6)

A slightly less general form of this result was
previously derived by Lamb [42]. A similar result
is obtained when the supersaturation is very large,
and during free evaporation.

The parameters B are proportional to both
the flux of heat to the surface and the crystal
thickness, but are inversely proportional to the
coefficient of heat conductivity. Physically, B,
represents the ratio of the latent heat flux into
the crystal to the heat flux out of the crystal
through conduction. Table 1 lists values of B, for
various solids, with the assumption T, = T;,. The
sensitivity in B, with temperature is due to the
exponential dependence of thc saturated vapor
pressure on temperature. The small magnitudes
of B,, for silicon, lead, and gold is due to both
the small magnitudes of their vapor pressures,
and their relatively large thermal conductivities.
In contrast, at large supersaturations ( p(7,,) >
(T ).

mi)

B, = RL_kB>/0\, (7)

where R is the growth rate in the absence of
crystal temperature gradients. Therefore, for a
given R and L, the thermal conductivity is the
controlling factor. Note the difference between
(7) and (3); (3) is independent of the applied
super /under saturation, while (7) is proportional
to the applied super /under saturation.

It should be noted that (6) is similar to the
result onc obtains when an isolated sphere is
growing, losing its heat to a surrounding inert gas
via conduction [43-45]. We have neglected the
impedance to heat flow at the crystal-substrate
interface. This impedance is negligible except at
very low temperatures [46]. The growth rate nor-
mal to the surface may be written;

R, =aR*, (%)
I A, !

*(+Bm+

& m

(9)

o=

1'1
o
A \eg

where {2 is the volume per molecule in the crys-
tal, « is the growth rate divided by the Hertz—
Knudsen growth rate,

Rk = Op(T)v(T)o/4kT,

without surface heating, and
o=p(T,— Ty /Ty

is the applied supersaturation. The growth rate
has been factorized in this manner because many
authors equate « with ! [1-9,11]. Examination
of (9) and table 1 shows that a;, values derived in
this manner will be too small in many cases. In

section 2.3, we will discuss this in more detail.
2.2. Three-dimensional effects

The circular disk shape (fig. 2) will be treated
first. This shape is an approximation to a hexago-
nal plate. Consider the case of a crystal with all
exposed vicinal faces above the roughening tem-
perature. For such a crystal, there is no cnergy
barrier for ledge formation. Therefore, the local
growth rate is determined only by the local sur-
face temperature. We may solve for the reduced
temperature using the method of separation of
variables with eq. (4) as the top and side surface
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Fig. 2. Geometry of a growing disc.

boundary condition and T=T7_, on the bottom
surface. The results from such a calculation will
depend on the parameter B, and the aspect ratio
L/a. The special case of B,=2 and L=a is
plotted in figs. 3a and 3b. The surface tempera-
ture is highest at the top edge (during growth)
and lowest at the base. The resulting non-uni-
formity of surface temperature translates into a

0.3 one dimensional heat conduction
0.5 [Bp=2L=az=L]
t ) . . a )
0.2 0.4 0.8 1
top view
0 i |
(a)

0.2 T side view of crystal \

0.2 0.4 2L 0.8 0.8 1

Fig. 3. Surface temperatures along the top and side of a

growing disc when the crystal is not constrained to retain its

shape. a}, =1 has been assumed. The one-dimensional ap-
proximation is the result from eq. (6) with A, /A, = 0.

non-uniformity in surface supersaturation through
the relation
g, = B(Teff - T)/Teff'

The crystal grows fastest where it meets the sub-
strate and slowest at the top edge. Therefore, a
crystal prepared with an initial disc shape will
grow into a flatter, rounder shape.

Now consider the case when the substrate
temperature is below the roughening tempera-
ture of all exposed vicinal faces. Crystals grown in
such an environment have been observed to re-
tain the same exposed vicinal faces [1,8-10].
Therefore, surface processes must compensate
for the non-uniformity in surface supersaturation
to produce a uniform growth rate over the vicinal
faces. This can be accomplished in one of two
ways; non-uniformity in the distribution of growth
sites, or a net migration of the mobile surface
molecule from the colder to the warmer parts of
the crystal surface. This latter mechanism ap-
pears unlikely, given the absence of a physical
mechanism. Therefore, in the rest of this paper,
only variations in the distribution of growth sites
will be considered. Since the growth process pro-
ceeds by the formation and motion of kinks along
a step, and the motion of the steps across the
vicinal face, a non-uniformity in the distribution
of growth sites can occur by a non-uniformity in
the kink density, the ledge density, or both.

The simplest mechanism for ensuring a con-
stant normal growth rate along a vicinal face is to
assume that the region of lowest surface supersat-
uration contains the source of the steps. This
source of steps is unlikely to be due to nucle-
ation, since nucleation is expected to occur first
at the regions of highest surface supersaturation
(although there is some experimental evidence to
the contrary [82]). Therefore, a self-perpetuating
step source is needed, such as a spiral step, or a
stacking fault [83]. At higher applied supersatura-
tions, nucleation of ledges in the higher surface
supersaturation regions may begin to compete
with the self-perpetuating step sources, and even-
tually, at high enough applied supersaturations,
may dominate the growth process. Note that the
normal growth rate along a vicinal face may be
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constant even if the step source is in a region of
higher surface supersaturation. This has been dis-
cussed previously [53,84].

Now introducing the reduced coordinates 7=
r/a and Z=z/L, and combining eq. (4) with
definitions (3) and (5),

d _ B, .
—I(F, 2)| = ——al(F, 2)t(F, 2)| , (10)
X m L m
where x =r or z depending on the surface where
this boundary condition is being evaluated. Ex-
cept when stated otherwise, in the rest of this
paper we will assume T,;=T,=T,, A,/A;=0
and an isotropic thermal conductivity. Since the
right-hand side of (10) is proportional to the
growth rate normal to the surface, which is as-
sumed to be constant along the surface, it must
be independent of surface position. Therefore,
we will assume it is equal to its value evaluated at
the step source. We will assume that the step
source is at the top edge for both the top and the
side face. Therefore,

o Bu . .
—x—t(r, Z)m= —Tam(l, 1)1(1,1), (11)

i(7,0)=1. (12)

Eqgs. (11) and (12) become the new boundary
conditions for the heat conduction problem. Eq.
(11) contains an unknown constant 7(1, 1). This
will be solved for by insisting on self-consistency.
The calculation is in appendix A. The result is

LoSm[fc (%) :1

0.75
— -
il

215 -1 -0.5 ©o 0.5 1 1.5 2

L
LOg]()(;)

Fig. 4. The shape factor for a cylindrical disc. The lower curve
is the approximation given in table 2.

)} b
A Ly b
Y

Fig. 5. Geometry of a growing disc on a semi-infinite slab.

identical to eq. (6), with the substitution; B, =
B, f.(L/a). The shape parameter f_ is plotted in
fig. 4. Note that it does not approach 1 as L /a
approaches (. Instead it has a limiting value of
1.74 because there is always surface heating along
the sides of the crystal. The resulting « is

-1

1

a= m(l 0 + B, f(L/a)] . (13)

In most experiments the heat must also be
conducted through a thin substrate layer before
reaching the thermometer. The heat conduction
problem for conduction through the crystal and a
finite substrate (fig. 5) may be approximated if we
replaces the heat flux through the base of the
crystal with its average value, and assume the
crystal base has a uniform temperature (fig. 6);

Ty L)

+B'f!(L/a)fe(Ly/a)| (14)

where B! is identical to B, except L/A —
Ly/Ay, L, and A, being the thickness and ther-
mal conductivity of the base, and f/(x) =1+ 2x.
The function fg is given in table 2.

We have performed similar calculations for a
growing rectangular slab and a hemisphere. A
compilation of the results, along with some useful

2=l
F L
ddd el d Tmo, = T
z-0 vvvv\vv-/
z=-L
Ty

Fig. 6. Cross section of a growing disc on a semi-infinite slab.
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approximations, are listed in table 2. The surface
heating for a given crystal thickness becomes
larger when the width decreases. This is because
the heat must be conducted through a narrower
region. The shape factor f. equals 2.24 for the
cylinder when the crystal radius is cqual to its
thickness and equals 2.70 for a cube of equal
volume and thickness. As expected, the shape
with the sharpest corners will grow/evaporate
the most slowly (if the step source is at the
outermost corner).

The calculations presented above have only
considered the heat conduction through the mon-
itored crystal. In gencral the heat conduction
through the source crystal must also be taken into
account. We expect that surface heating/ cooling
of the source crystal will bring new terms to the
denominators of eqgs. (13) and (14) which are
identical to the existing terms, but with the sub-
stitution m — s, and a prefactor 4., /A, (as in the
third term in the denominator of eq. (9)). This is
because the derivation above also applies to sur-
face cooling during evaporation. When one of the
crystals is growing, the other is cvaporating, but
each must conduct heat between its surface and
its substrate. Note that the combined effects of
heat conduction in the sourcc and monitored
crystal change the magnitude, not the sign, of the
surface supersaturation. A previous experiment
[85] had mecasured sublimation when growth was
expected. This behavior cannot be duc to hcat
conduction. Note that radiative heating/cooling
may shift the equilibrium temperature to a
lower / higher temperature, but the magnitude of
the shift is independent of supersaturation.

2.3. Comparison with experiment

The results above may be used to reanalyze
recent experiments on the growth rate of ice from
the vapor [1-10,86]. A compilation of the results
is plotted in fig. 7, along with curves plotted using
eq. (13). The measured reduction in growth rate
may be approximately fit assuming values of the
crystal thickness between 50 and 200 pm. The
exact crystal sizes present during measurement
were generally not reported by the authors. How-
ever, the experiments at temperatures greater

NN
Ny NN
KEKKK K
0.6 g
o L\
.4 P
| N
% T
). 2 —
160 180 200 T 220 240 266

Fig. 7. Compilation of growth rate experiments on ice crystals.
The fetters indicate the researchers: S = Sei and Gonda [K8].
B = Beckmann and Lacmann [1], L = Lamb [10] (calculated by
Beckmann and Lacmann [1]), Ku = Kuroda and Gonda [2],
(G = Gonda and Koike [86), D = Davy and Somorjai [3). M =
Kramers and Stemerding [4] (corrected for molecular flow
impedance by Cammenga et al. [12]), N = Nitsch and Viardot
[3], K = Koros et al. [6]. Also shown is the estimate from eq.
(13) with L = ¢ = 50 and 100 wm. Inset shows the region near
273 K.

than 230 K were on crystals with thicknesses
probably near these two values.

This analysis may also be compared with a
recent experiment on the growth rate of xenon
and krypton [11]. The crystals were approximately
20 pm thick and more than three times as wide.
Since these crystals were observed to be rounded.
the crystal shape probably flattened as it grew,
and hence, the analysis presented above does not
strictly apply. This will be considered in more
detail in section 4. Nevertheless, it seems quite
rcasonable that the growth rate should be given
by eq. (13) with the function f lying between |
and its value for a sphere. Assuming f = 1. the
calculated value of « for xenon at 161 K is
0.0054, and for krypton at 115 K, « = 0.0040.
These are fairly close to the measured values of
(.00835 and 0.00619. Note that the ratio of the
two values are 1.35 + 0.2 (measured), and 1.36 +
0.3 (calculated), which is approximately indepen-
dent of crystal thickness. The uncertainty in the
calculated value is due to the uncertainty in the
heat conductivity {57]. These two observations
together suggest that the measured reduction in
growth rate was due to surface heating.

In both of these cases, the authors neglected
the contributions from the second and third terms
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Fig. 8. Size of an ice crystal growing at —30°C, 2.7% supersat-
uration. Also shown are the data of Sei and Gonda [8).

in the denominator of (14), and concluded that
the measured decrease in growth rates (a) were
due to the condensation coefficient (a; ). The
results of this section suggest that the measured
growth rates may be due to surface heating in-
stead, and thus the condensation coefficient may
be equal to one, as is theoretically expected [12].
The analysis given above does not rule out the
possibility that «! may be less than one (in the
linear growth regime). Instead it must be closer
to one than the measurements had suggested.

The thickness of the crystal as a function of
time is easily calculated. It is given by:

L(t)
hk 1/2
=|C?+2CL(0) + L*(0) + 27‘“: -Cc| ,
2

(15)

where C,=B,f./L,, and C=(1/a' +B'f})/
C,. The special case o, f.=1, B', L(0) =0, and
o =0.027, T,= —30°C is shown in fig. 8. It can be
seen that, at least over small size ranges, the
curvature is very small. Note that if (1) a} is the
same on all faces and (2) the amount of surface
migration of mobile surface molecules from one
face to another is small [15], then the crystal
width should grow at the same rate as the thick-
ness. In fact, this was assumed in the derivation
of (15). Slight curvatures, which can be fit to (15),
have appeared in the data on ice [2,8] and kryp-
ton [51]. Note also that as B! increases, the
curvature will decrease even further. It had been

argued that a linear relationship between crystal
size and time indicates that surface-heating is
insignificant [2,8]. Since the actual curvature can
be very small, this is not the case.

3. Step kinetics
3.1. Step spacing at constant supersaturation

It was argued in section 2 above that the ledge
kinetics must compensate for the surface heating.
During growth, this requires that the step spacing
increase in the colder regions of the crystal. The
dependence of «!, on the step spacing (in the
absence of vapor diffusion, and assuming a high
density of kinks) is given by [38,39]

o, = (2/9) tanh($/2), (16)

where § =ledge spacing divided by D7, D; is
the surface diffusion constant and 7, is the mean

surface residence time. For simplicity, the step

z/L
0.2 o] 0.6 0.8
Bm =2,L=a
0.8 a7
0.6
1
sidevievlvo(
| crystal
0.4 ( T — |
0.2
(a)
:Iu
0.2 0.4 0.6 0

0.8
0.6 .

top view

O

of crystal
0.4
0.2} (b) !

Fig. 9. Surface heating and surface diffusion contributions to
the reduction in growth rate along the top (b) and side (a) of a
cylindrical disc.
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capture coefficients from the top and bottom
terrace have been assumed to be large. Figs. 9a
and 9b show a plot of 7 (7, 7), and the required
value of o' ;

m?

al (F, Z)y=a' (1, 1) £(1, D) /i(F, 7). (17)
for the case when a} (1, 1)=1. This expression
may then be used, along with (16), to solve for y
along the top, and sides of a disc shaped crystal.
The special case B,, =2, L =a is plotted in fig.
10. The step spacing equals 0 at the corners
because a) (1, 1) =1 has been assumed. The pre-
dicted decrease in step spacing at the corners
furthest from the substrate has been observed
[42,49,50]. During growth, «! depends on the
surface supersaturation o, which differs from the
applied supersaturation o = B(T, — T,.,)/ T,
Hereafter, when o, or !, are used, it is assumed
that they are evaluated at the step source.

3.2. Extracting surface parameters from growth
rate data

Eq. (16), combined with the BCF relation 2 /9
=a,/a, [39], gives the frequently used expression
relating «!, and o, for a spiral step source:

ay, = (0, /0y) tanh(o/0,). (18)

This expression allows one to extract the pa-
rameter ¢, from the growth rate curve, provided
one knows the surface supersaturation. In ap-
pendix B, a method is introduced which allows

0.2 o]

‘4:/L.r/a0’6 0.8 1

Fig. 10. Normalized ledge spacings along the top and side of a
growing cylinder. The condensation coefficient at the top
edge is assumed equal to [.

100/__———4-
0.8} /10
7 p
0.6 -
o /1/ /////
Qoo
0.4 B/ 0.1
0.2
0.5 1 1.5 2 2.5 k1
rx/(sI
Fig. 11. Normalized growth rate at small supersaturations for

a cylindrical disc.

one to calculate the surface supersaturation o, =
oa/ay,. Using this method, @' versus o has
been plotted in fig. 11 for several values of B,,.
When B, is large, the surface heating drastically
changes the growth curve. The change in the
growth curve is due to an exchange in importance
of the two terms in the denominator of (13). As
the supersaturation is lowered, the surface kinet-
ics (18) becomes more important. As the surface
kinetics reduce the growth rate, the surface heat-
ing effect is reduced. This trade-off, or exchange,
between surface kinetics and surface heating pre-
vents the growth rate from decreasing rapidly
until the surface heating effect becomes negligi-
ble. When this happens, the growth rate de-
creases with ¢ much more quickly. Therefore, as
B_, increases, the applied supersaturation at which
the growth rate becomes linear in o decreases.
Equivalently, the limiting slope of a(a)/a(x) as
o — 0 increases with B . Using (13), (18) and
(27), the limiting slope is given by

I+ B, fo(L/a) + B[ (L/a)

7y

(19)

However, if surface heating had been ne-
glected, the second and third terms in the numer-
ator would not appear. Therefore, if one had
extracted o, from the data in this manner, the
actual value would differ from the measured value
in the following way:

actual __ __measured
a =0 /

| « = constant. (20)
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Eq. (20) is general, and applies to all o which
are influenced by surface heating, vapor diffu-
sion, vapor flow impedance [47], or any combina-
tion of these. Evidence for this relationship can
be found in recent experiments on ice growth [9].
The growth rate of single ice crystals at —15°C
was measured for ice crystals with dimensions of
approximately 200 and 400 ym. When the larger
ice crystal was measured, o/™*"*¢=106 and
1/a =11.23, while the smaller crystal gave the
values 1.8 and 6.67. The product of each set of
numbers is the actual value of o, and gives 11.9
for the larger crystal, while the smaller crystal has
the value 12.0. Note that neither o, nor aj,
should depend on crystal size. Therefore, the
analysis presented in this section may be used to
correct experimentally derived values of o,. For
the case of ice, the original and corrected values
for various temperatures are given in table 2.

4. Growth shape
4.1. The rounding transition

Surface processes can only keep the crystal
face vicinal between two points on the face when
the surface supersaturation difference between
these two points is not too large. Above a critical
surface supersaturation difference, the shape of
the crystal will change. For instance, ice crystals
grown on a substrate in a single component vapor
have been observed to become flatter and rounder
when the applied supersaturation becomes
greater than a certain value [1,42], while dendritic
growth is observed at large applied supersatura-
tions when the growth units must diffuse through
an inert foreign gas [15,53]. These two transitions
can be related in the following way. Consider the
case of dendritic ice crystals grown in an inert
foreign gas. These form only at certain tempera-
tures, and at external supersaturations above ap-
proximately 15% [15,53]. At lower supersatura-
tions hexagonal plates are formed (see fig. 12).
One can easily estimate the surface supersatura-
tion difference Ao, between a corner and the
center of an edge face by assuming a spherically
symmetric diffusion field centered on the crystal.

/

Fig. 12. Estimation of the supersaturation between the corner,
and the center of an edge of a hexagonal plate crystal growing
in 1 atm of air.

This predicts Ao, < 2%. Beckmann and Lacmann
[1], growing ice on a substrate in a pure vapor
environment, observed the crystal edges becom-
ing rounder when the applied supersaturation
was greater than approximately 1.3%. The largest
difference in surface supersaturation for a circu-
lar disc (approximately a hexagonal plate) occurs
between the substrate and the top edge. At the
base of the crystal, the surface supersaturation
equals the applied supersaturation (7=T,,),
while at the top corner of the crystal, the surface
supersaturation is given by o, = ca/a!,. Assum-
ing al, =1 and B'=0, the difference in surface
supersaturation is = 1.1%, which agrees fairly
well with the dendritic transition estimate given
above.

In the above example, it was argued that the
transition to rounded growth on a substrate de-
pends on the magnitude of B . A larger value of
B,, causes a transition at a lower value of applied
supersaturation. Experiments on rare gas crystals
at low temperature (smaller values of B,) found
growth shapes with exposed vicinal faces [25],
while similar experiments at higher temperatures
(very large values of B_) found only rounded
growth shapes [11]. It was argued that this was
due to the roughening transition on the exposed
faces. Since the magnitudes of B, are so large
for this system, the transition may be strongly
influenced by surface heating.

4.2. Growth of a rounded crystal

When the surface supersaturation difference
between two points on a vicinal face becomes
larger than a critical value, the boundary of this
face will begin to grow at a slower rate. For
instance, consider the disc-shaped crystal. When
the top edge becomes rounded, the top face, and
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Table 3

The measured [8] and corrected values of the limiting slope parameter (o)) for ice crystal growth (@), = o, /oy as o, — ) the first
column, 1+ fB was derived from the measured reduction in growth rate: when the prism and basal facets had different values, the

average value was used

Temperature (°C) I+ fB o(meas) {0001} (%)

a(corr) {0001} (<)

ardmeas) {1010} (%) oreorn) {1070} (77)

—-1.9 7.14 0.56+0.1 4.0

-3.1 111 0.35 3.89

-7 6.67 2.5 160.67
- 15 6.67 0.5 3.33
=30 2.82 1.7 4.79

0.5 357
0.38 422
2.2 14.67
1.8 [2.0
27 7.01

the side face can no longer grow at the same rate.
If the radius of curvature of the edge 1s much
smaller than the radius of the crystal, the growth
rates of both faces may be calculated. Since the
magnitude of 7 is generally larger along the side
of the crystal than along the top of the crystal
(figs. 9a and 9b), the top face will likely grow
slower than the bottom face. Therefore, after this
critical size /applied supersaturation is reached,
the rounded crystal will begin to spread out and
become flatter in appearance [42].

5. Conclusions

Several effects of surface heating on crystal
growth have been presented. Some of them, such
as a reduction in growth rate, and a reduction in
the transition supersaturation for linear growth
have been shown to quantitatively agree with
experiment. Other effects, such as the variation
in ledge spacing across a face, and the transition
supersaturation for edge rounding, have been
shown to agree qualitatively with experiment. It is
argued that the measured reduction in growth
rates (a) of ice, xenon, and krypton in a pure
vapor environment are due to surface heating
instead of the condensation coefficient (a}, ).
Therefore, the experimental results are consistent
with a condensation coefficient of unity. One may
turn the argument around, and measure growth
rates to infer thermal conductivities. Such a mea-
surement will rest on the assumption that a!, = 1.
The Langmuir method for measuring vapor pres-
sures depends on this same assumption. For in-
stance, if this assumption is applied to the growth
of adamantane [78], a thermal conductivity of

0.16 W/m-K is deduced. This is a rcasonable
value for a plastic crystal.

The role of heat conduction during crystal
growth has become known as a secondary effect
[12.54]. We have discussed one other secondary
effect: vapor flow impedance. Another common
secondary effect is impurity adsorption [55,56]. A
common feature of secondary cffects is alteration
of growth and evaporation rates. In this regard,
our understanding of condensation ecffects on
solids may be following the long history of con-
densation coefficient measurements of liquids.
Early measurements found small condensation
coefficients. Later experimenters were more carc-
ful about avoiding secondary effects. and instead
measured coefficients near unity [54]. This same
trend is occurring in the measurements of con-
densation coefficients of solids [13]. The only
known exceptions to this trend are mecasurements
on materials which must undergo a chemical
change upon condensation or evaporation such as
arsenic [14]. Some authors [79,80] have reported
larger values of the evaporation coefficient at
temperatures just above the melting temperature
compared with the values just below the melting
temperature. This is possibly due to convective
heat transport in the liquid, which will drastically
reduce the surface heating if the crystal /liquid
thickness is larger than a convective cell dimen-
sion [54,81].
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Appendix A

Let @ =7 — 1. This gives the bottom surface a
homogeneous boundary condition. By splitting @
into 2 parts, where each part has only 1 non-ho-
mogeneous boundary condition, the technique of
separation of variables may be used. The result is

3 z 2 2 1
® = —-Ba! l(l 1) z 77-_ ;0 (n+_1/2)

(21)

where x,, =(n +1/2)7, and [, are the modified
Bessel functions [77]. If this expression is evalu-
ated at the top corner, ¢ (1, 1) may be extracted:

) 1
’(L1)=1+a;BﬂL/@’ (22)
2 2 -1" Iy(x,a/L)
Flb/a) =143 L 3y Taa/L)
(23)

Appendix B

Eqs. (13) and (14) can be put in the form:

oR . R¥(a)
R, = , R=—,
1/ai(0,)+1/2Z o

(24)

where all terms in the denominator except 1/af,
have been lumped into 1/2Z. Since the defini-
tion of o, requires that R= o-Ra 1. it follows
that

g

T a2z =

Using (18), this can be “solved” for a}, to obtain

(75)

o
Z?+2Z7Z— tanh

gy a/o|

N

-Z, (26)

which can be iterated to find «!,. Consider the

following limiting cases:

Case (1), /0, < 1, tanh — 1. Therefore:

T
a;ﬂ(ors)=]/Z2+2Z— ~-Z. (27)
g1

Case 2), /o> 1—-1/2Z:
al, =1 (28)

Cases (1) and (2) are both realized by starting
with a! =1 in the right-hand side of (26). It has
been found that after 3 or less iterations, the
result converges to 3 digit accuracy when this
starting point is used.
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