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ABSTRACT 
By estimating the diffusion field adjacent to growing snow crystals and using a 

variety of ice crystal growth data, it is shown that most observations of snow 
crystal habits above -22°C are explained by dislocation-promoted growth at 
small sizes and low supersaturations, but otherwise layer nucleation controls 
the growth habits in agreement with the Knight-Frank theory. The formation 
of capped columns, crown crystals, and hollowed crystals, and the growth rates of 
needles and dendrites also fit predictions of the theory. The analysis suggests that 
dendrites at water saturation retain small facets at their growing tips. Below 
-22"C, the available data together with predicted trends of the edge energy 
show that spiral steps and layer nucleation can explain why both tabular and 
columnar forms grow at the same temperature but different supersaturations. 
Other growth mechanisms that were proposed in the past, such as step speed 
variations, surface phase transitions and adatom migration across crystal edges 
are incapable of explaining the wide variety of available habit data. 

9 1. INTRODUCTION 
Growth shapes of faceted crystals are determined by the relative growth rates of 

their faces and thus controlled by surface kinetics and bulk transport of both mate- 
rial and heat. Hence, growth shapes are much more diverse than equilibrium shapes, 
which are determined by surface free energies. Of all single-component vapour- 
grown crystals studied to date, few have shapes (habits) as sensitive to environmental 
conditions and probably none has been studied as long as the snow crystal. Their 
variable habits were noted at least as far back as Descartes (Frank 1982) and their 
usual sixfold symmetry was first recorded around 135 BC (Needham and Gwei-Djen 
1961), but how the habit depends on environmental conditions was not found until 
1936 (Nakaya and Sekido 1936). Further work by many scientists on how the snow 
crystal habit depends on temperature and supersaturation in an atmosphere of air is 
summarized as figure 1. Despite many attempts over their long history of study, a 
complete, widely accepted theory for their growth habits has not emerged. This 
paper shows that the interplay between two mechanisms can explain both figure 1 
and also how crystal habit depends on the ambient gas pressure. 

Snow crystal shape is classified into primary and secondary habits. The primary 
habit of single crystals depends on their aspect ratio r: the ratio of the maximum 
length 2c along the c axis (0001) to the maximum width 2a along (1 120) (figure 2). 

7 Email: nelson@sd5.so-net.ne.jp. 

Philosophical Mugazine A ISSN 0141-8610 print/ISSN 1460-6992 online c) 2001 Taylor & Francis Ltd 
httpr//www.tandf.co. ukjjournals 

DOlr 10.1080/014l8610010030050 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
4:

50
 2

1 
Ju

ly
 2

01
1 



2338 

- columnar -. 
J. Nelson 

- tabular - *columnar -cl+tabular- h 

8 
8 
Y 

.- 
0 

0)  
30 .$ 

m 

c 

- 
?! 

20 - 
E 

C 
0 .- 
c f 

10 g 
m 
Q) 

c c 
Q) 

a .- 
E - u  -2 5 -2 0 -15 -10 -5 

Temperature "C 

Figure I .  Modified Nakaya diagram of snow crystal growth habits after about 10min 
growth at 1 atm at various ambient temperatures and supersaturations (aufm 
Kampe et al. 1951, Nakaya 1954, Hallett and Mason 1958a, Kobayashi 1961, Wang 
and Fukuta 1985, Takahashi et al. 199 1). The high-supersaturation primary habits 
(labelled at the top) are less exaggerated at 3.3 min (Yamashitd 1974, Ryan et al. 1976). 
The water saturation curve is the ice supersaturation of liquid water equilibrium. 
Terms are from Magono and Lee (1966): solid thick plate (Clg), hexagonal plate 
(Pla), solid column (Cle), hollow column (Clf), elementary sheath (N Ic), elementary 
needle (Nla), crystal with broad branches or sector plate (Plc) and dendritic crystal 
(Ple). Only Cle and Clg are simple eight-sided polyhedra; all others have lacunae, 
that is slower-growing regions, on their faces. The dotted curves are boundaries of Ple 
and Nlc  growth without air flow; they extend a few per cent lower in supersaturation 
for free-falling crystals (Takahashi et a!. I99 I). Polycrystals and trigonal crystals are 
not shown as their formation depends on the nucleation conditions. The vertical 
dividing lines separating the high-supersaturation primary habits range between the 
value of -20°C obtained by aufm Kampe et a/. to the value of -25°C found by Hallett 
and Mason for the coldest transition but are more consistent among experiments at 
the warmer transitions. Because latent heating increases the surface temperature with 
increasing supersaturation, these dividing lines should tilt towards the ordinate 
(Rottner and Vali 1974). Low-supersaturation habits usually have r (defined in figure 
2) between 0.5 and 2.0, although there are many exceptions and conflicting observa- 
tions owing to variations in defect content, thermal gradients, Substrate influences and 
growth times (Nelson and Knight 1998); hence, they are not shown. Above -20°C and 
below 0.1 % supersaturation, the equilibrium habit is tabular with f = 0.4, but well 
rounded in the basal plane above - 10°C (Colbeck 1985), although supersaturation 
gradients might have affected the measured f. 

This ranges from tabular (r < 1) through isometric (r z 1) to columnar (r  > 1). 
The secondary habit is the finer details of shape, such as the magnitude o f f ,  the 
amount of hollowing, and the number and shape of branches or needles. Except at 
the lowest supersaturations, the primary habit depends only on temperature in an 
inert-gas atmosphere, whereas the secondary habit changes with time, temperature, 
supersaturation, crystal size, vapour mean free path and thermal conductivity of the 
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Growth mechanisms and habits of snow crystals 2339 
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Figure 2. (a) Dimensions of a solid prismatic ice crystal and (b) the shape used for calcula- 
tions of aspect ratio f during growth. f = c /a  and the face names are the same for 
both shapes. z is a general coordinate used for both faces to describe positions on the 
surface. 

air. Both habits are also sensitive to small concentrations of gaseous impurities. For 
example, Hallett and Mason (1 958b) and Nakaya et al. (1958) found that mbar 
of isobutyl alcohol and mbar of acetone respectively cause habit changes near 
-16°C. In contrast, sublimation shapes depend only on the initial crystal shape 
before sublimating (Nelson 1998). Because snow crystal surfaces are mostly facets, 
growth is by step formation and motion; therefore, the goal here is to determine the 
step sources and how they determine the crystal habit. This involves calculating the 
step generation rate for various growth mechanisms on freely falling crystals, which 
requires estimates of the surface parameters and comparison of the various processes 
that affect growth. 

The Burton, Cabrera and Frank (BCF) (1951) theory of spiral-step growth and 
adatom diffusion is used here because it predicts both observations of dislocation 
outcrops (Gonda et al. 1994) and the relation between the adatom migration dis- 
tance (Mason et al. 1963) and the step speeds (Kobayashi 1967) even though it is not 
designed for partly disordered surfaces such as ice and poorly estimates the migra- 
tion distance and step speeds on the basal face. The diffusing species on ice surfaces 
could be single molecules, surface vacancies or molecular clusters, and their diffusion 
constant could be concentration dependent (Zinke-Allmang and Feldman 1988, 
Myers-Beaghton and Vvedensky 1990). Thus more general surface diffusion models 
that include adatom-adatom interactions and vacancies might ultimately be needed 
for ice surfaces, but they contain parameters that are at present difficult to estimate. 
Furthermore, although stacking faults are common in frost crystals (McKnight and 
Hallett 1978, Mizuno 1978) and could produce self-propagating regions on prism 
faces that have easier layer nucleation (van de Waal 1996), their growth mechanism 
on ice surfaces has not been developed. Hence, even though they might promote 
tabular growth in some conditions, only spiral step and layer nucleation growth 
mechanisms are considered here. Finally, except where noted, latent heating of the 
crystals is not considered. 

Accurate prediction of crystal habit in cold cirrus clouds might improve climate 
modelling because the habit, which is varied and often polycrystalline, affects the 
optical properties of these clouds (Iaquinta et al. 1995, Macke et al. 1998). Below 
-22"C, columnar forms are more common (Heymsfield and Platt 1984, aufm Kampe 
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2340 J. Nelson 

et al. 1951), although both primary habits are observed in clouds (Korolev ef  al. 
1999), in experiments (Gonda and Koike 1983) and even side by side (Keller et al. 
1980). A better understanding of snow crystal growth mechanisms can clarify the 
habit diagram in figure 1, which thus has important applications. 

$2. PRIMARY HABIT 

2. I .  Layer nucleation: adatom migration over edgm 
Extending a suggestion by Hallett (1961), Mason et al. (1963) proposed that 

columnar crystals form when the adatom migration distance x b  on the basal face 
is less than the adatom migration distance xp on the prism face, and vice versa for 
tabular crystals. (The subscripts b and p refer to basal and prism faces respectively.) 
They argued that a smaller xb results in a net migration of adatoms from the prism to 
the basal and consequently more rapid nucleation on the latter face. The opposite 
was assumed true when x b  is greater than xp. Mason (1993) used this argument plus 
data on growth shapes to predict values of xp, which have not been measured. 

There are three problems with their hypothesis. Firstly, it fails unless the basal 
and prism faces have nearly identical layer nucleation rates far from edges. However, 
instead, these two faces should have different layer nucleation rates because they 
probably have different surface energies and hence different edge energies (5  2.3). 
Secondly, assuming that there are equal layer nucleation rates for both faces far 
from the edge, assuming that there is no additional energy barrier for an adatom to 
cross the edge and assuming that nucleation occurs at equal distances from the edge 
for both faces, then the BCF theory instead predicts the opposite primary habits to 
those that Mason et al. explained. Changing the latter two assumptions can alter this 
conclusion but that would introduce new unknown surface parameters. Finally, if 
adatom migration determines the primary habit when crystal sizes are several 
microns or less, then according to Mason’s (1993) equations, the primary habit 
would be independent of supersaturation, which is contrary to low-supersaturation 
data (figure 1) and low-temperature data (§2.6), and the secondary habit would be 
very sensitive to the initial crystal size, which is contrary to the data given later in 
figure 9. Thus, adatom migration over edges cannot explain the primary habit, 
although it might affect the growth rates of small-area faces (5  3.4). 

2.2. Layer nucleation: step speeds 
Hobbs and Scott (1 965) suggested that nucleation rates increase with increasing 

speed of isolated steps; therefore, Hallett’s (1961) measured step speeds on the basal 
face could explain the primary habit if certain prism-face step speeds are assumed. 
However, Kobayashi (1967) and Cho and Hallett (1984) later measured different 
step speeds that could not explain the primary habit according to this model. 
Furthermore, as suggested by Lamb and Scott (1972), if the BCF model had been 
used consistently in their theory, variations in the step speed would not cause varia- 
tions in the nucleation rates because the step separation would vary in the opposite 
manner. Thus theory and lack of relevant data make it difficult to explain primary 
habit in terms of step speeds. 

2.3. Layer nucleation: critical supersaturations 
Knight (1972, 1996) and Frank (1974) suggested that the primary habit could be 

explained by the relative rates of layer nucleation on the basal and prism faces. 
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Growth mechanisms and habits of snow crystals 2341 

Because only small increases in supersaturation above a critical value result in large 
increases in the growth rate, only small relative changes in the critical supersatura- 
tions between the basal and prism faces are needed to produce different 
primary habits. 

At low supersaturations, the growth rate R for a face nucleating circular disc 
embryos at the edge with supersaturation oe is proportional to 

Rccexp [48(1 -%)I, 
where a,, is the critical supersaturation at which one layer per second is nucleated on 
the surface (appendix A). For a circular disc embryo, this is 

2 naOK 
a,, = ~ 

48(kT)2 ' 

where a. is the area of a molecule on the surface, 6 is the edge energy, k is 
Boltzmann's constant and T is the temperature. It follows from equation (1) that 
a 10% increase in a, near a,, results in a growth rate increase of exp(4.8) M 100; 
from equation (2), the same growth rate change results from a 10% decrease in a,., 
which needs only a 5% decrease in 6. Referring to figure 3, if the critical super- 
saturation on the basal 0cr-b is less than that on the prism and both step 
sources are at the edge with supersaturation a,, then almost no growth occurs at 
supersaturations less than line a; between lines a and b there is only growth on the 
basal leading to thin columns; however, at supersaturations above line b, both faces 
grow until at c they grow at equal rates. (This saturation in growth rates is described 
in appendix A.) Except for the brief initial growth on micron-sized crystals when the 
surface supersaturation ae can be close to the ambient, a, is well below line c. Thus 
over most of the range in which growth occurs, it only occurs on one face leading to 
very thin or narrow crystals. Therefore, the layer nucleation mechanism requires that 
0cr-b > aCrpp above -3"C, 0cr-b < acr-,, between -9 and -3"C, acr-b > acrpp 
between -22 and -9"C, and a,, b < below -22°C to explain the primary 

R 

Figure 3. Growth habit from layer nucleation on both basal and prism faces as a function of 
surface supersaturation when the basal critical value is the lowest. 
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Figure 4. Measured critical supersaturations gcrPb and ocr-p for the basal (m) and prism 
(A, v) faces respectively (Nelson and Knight 1998). The left-hand ordinate is for the 
hand-drawn shaded curve that fits the adatom migration distance data on the basal 
face (Mason et al. 1963). 

habits in figure 1. Nelson and Knight (1998) found that many basal faces and some 
prism faces were perfect, which allowed direct measurement of UccrPb and a,,+ the 
data, reproduced as figure 4, directly supports this mechanism above - 16°C. Finally, 
that layer nucleation probably controls sector and dendritic growth follows from the 
straightness of their arms (Nelson and Knight 1998) and their near-symmetric 
growth patterns (Frank 1982). Imperfections, particularly from dislocation outcrops, 
alters the simple description in this section; however, the formation of lacunae can 
minimize the influence of imperfections, thus allowing layer nucleation to produce 
extreme habits on nearly perfect regions of snow crystals (4 3). 

2.4. Spiral-step growth 
Spiral steps, probably from surface outcrops of screw dislocations, could affect 

snow crystal growth: spiral steps have been observed to grow and evaporate ice 
crystal faces (Furukawa and Kohata 1993, Gonda et al. 1994), substrate-grown 
crystals in pure vapour often follow the spiral-step prediction of the BCF theory 
(Lamb and Scott 1972, Beckmann and Lacmann 1982, Sei and Gonda 1989) and, 
above -2O"C, negative crystals grown in ice blocks with many dislocations have the 
same primary habit as high-supersaturation positive crystals (Knight and Knight 
1965, Furukawa and Kohata 1993). X-ray measurements also showed screw and 
edge dislocations in vapour-grown ice (McKnight and Hallett 1978, Mizuno 
1978). However, the dislocation density was highest where the crystals were sup- 
ported, and some dislocation-free prism faces grew at the same rate as those with 
dislocations. Also, after observing etch pits on snow crystals, Kuroiwa (1961) sug- 
gested that the crystals collected small particles during free fall that produced dis- 
locations. Such dislocations could produce spiral steps during growth but, for 
collection to be significant, the crystals must be relatively large ( 5  3.5) and, further- 
more, etch pits can form without dislocations. 

Although cloud supersaturations can exceed 30% (water saturation when 
T < -27"C), surface supersaturations near the crystal u are small because vapour 
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Growth mechanisms and habits of snow crystals 2343 

exchange with the surface is much faster than vapour diffusion. In this case, the 
growth rate from a distribution of spiral steps is (BCF) 

2 dc 
dt (3) 

where ,8 is the collisional sticking coefficient of a vapour molecule on the terrace 
multiplied by a factor that would be less than one if impurities block growth sites 
and E is a dimensionless factor that depends on o and both the positions and signs of 
the dislocations. At supersaturations above the characteristic supersaturation oI , the 
right-hand side of equation (3) is multiplied by tanh (ol/o), which makes the growth 
rate independent of ol. Spiral-step growth rates are further reduced by 

(i) coupling between vapour and adatom diffusion fields when the vapour mean 

(ii) the depletion of adatom concentration at the spiral centre by nearby spiral 
free path is less than Xb (Gilmer et al. 1971) and 

turns (Surek et al. 1973). 

Effect (i) can be large at low supersaturations, whereas effect (ii) is relatively 
small but, for simplicity, neither effect is considered here. E depends on the config- 
uration of dislocations in the initial crystal nucleus and its variability would cause 
variations in crystal habit under the same conditions (for example Lubetkin and 
Dunning (1978)), as would the two types of spiral step with different f l l b  values 
measured at -28.5”C (Gonda et al. 1994). The most anisotropic growth occurs 
when the growth-dominating spirals are at the edge (see figure 9 later), which occurs 
in the unlikely case that each face has many spiral steps with E x 1; the resulting ratio 
of growth rates is independent of o: 

Sei and Gonda (1989) argued that the primary habit is controlled by Pb/&, which 
they measured on ice crystals grown in a pure vapour on a substrate. However, the 
measured ratios varied from 0.64 to 1.3 and were even closer to one because of 
temperature gradients in the crystals (Nelson 1993); thus pb/Pp  cannot explain the 
observed high-supersaturation snow crystal r values that typically range from 0.01 
to 20. Hereafter Pb  and Pp are assumed to be one. Lamb and Scott (1972) instead 
argued that a l p / o l b  determines the primary habits, which is consistent with the low- 
supersaturation data of Kobayashi (1961) and the negative crystal data, both sets of 
which also had considerable variation in r. Unfortunately, most direct measure- 
ments of ulp and cflb are unreliable because growth rates are affected by both tem- 
perature gradients and layer nucleation between spiral steps (9 2.7). 

Both spiral-step and layer nucleation growth rates increase when K. decreases, 
although the former also depends on xb and xp; therefore, low-supersaturation 
primary habits can be the same or different from high-supersaturation habits 
depending on how much xb differs from xp, the latter of which has not been mea- 
sured. For instance, if xp is close to 4 pm (the maximum value of xb), then equation 
(4) with K),/Kp x (Ucr-b/Ucr-p)”2 (equation (2)) and the data in figure 4 can explain 
the nearly isometric tabular crystals observed by Kobayashi (1 961) below and above 
- 10°C. However, layer nucleation growth rates increase much more rapidly with 
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2344 J. Nelson 

supersaturation than does spiral-step growth, and so growth at moderate to high 
supersaturations is more probably due to layer nucleation (5 2.7). 

2.5. Surface phase transitions 
Kuroda and Lacmann (KL) (1982) argued that the growth rate of each face is 

fastest when rough, slower when surface melted and slowest when smooth; further- 
more, KL assumed that each of these phases would occur on each face over some 
temperature range. The theory of Fukuta and Lu (1994) also required rough and 
surface-melted surfaces. The arguments below indicate serious flaws in both theories. 

On rough surfaces, the growth rate is proportional to the surface supersaturation 
o, which is non-uniform on a facet in a diffusion field. Hence, rough snow crystal 
surfaces cannot remain faceted. However, only prism facets have vanished on snow 
crystals (Keller et al. 1980, Yamashita and Asano 1984), but this is rare. Rough 
surfaces thus cannot explain the primary habit of a snow crystal. 

In a uniform melt layer, both the liquid-vapour and the solid-melt interfaces 
have phase changes. The liquid-vapour interface cannot limit growth as all incident 
vapour molecules condense. So instead, KL assumed that the solid-melt interface 
limits growth, but it was shown by Nelson and Knight (1998) that measured critical 
supersaturations are at least ten times greater than those that would result from such 
solidification-limited growth. This discrepancy should only worsen if the melt layer is 
partly ice like (Mizuno and Hanafusa 1987) for the following reason: critical super- 
saturations for the solid-melt growth should decrease with decreasing edge energy K 

(e.g. equation (2)), but K should decrease as the two phases become more nearly 
equal. Conversely, if the vapour interface retains ice-like ordering, as the data of 
Golecki and Jaccard (1978) showed, the vapour interface would limit growth, which 
is contrary to KL's assumption. Measurements of surface disorder are inconsistent 
(Petrenko and Whitworth 1999) and theories of surface melt layers are disputed 
(Knight 1996); nevertheless, growth into a surface melt layer is inconsistent with 
data. 

KL argued that vapour diffusion causes columnar growth at low temperatures 
but, instead, the diffusion field calculations for spheroids by Ham (1959) and cylin- 
ders by Nelson and Baker (1996) show that vapour diffusion favours no particular r. 
The side-by-side column and plate observed by Keller et al. (1980) also cannot be 
explained by their diffusion field argument. A more fundamental problem with the 
KL theory is that it requires the basal's roughening temperature coincidently to 
equal the prism's surface-melting transition temperature. 

2.6. Primary habits at low temperatures 
Below about -22°C mostly columns grow in clouds (figure l), but both primary 

habits occur when supersaturations are low. Thus layer nucleation cannot be the sole 
growth mechanism. Although information about growth mechanisms at low 
temperatures is lacking, the previously described trends and theories are extended 
to lower temperatures to see what they predict. 

A striking feature of the basal face critical supersaturations 0cr-b is the resem- 
blance to measured xb values (figure 4) and basal step speed data (Kobayashi 1967, 
Cho and Hallet 1984). If 0cr-b continues to follow the x b  trend to lower temperatures 
by decreasing, and if ocrpp continues to increase, then layer nucleation should cause a 
transition to high-supersaturation columnar growth below about -20"C, in agree- 
ment with figure 1. (However, ocr-b cannot decrease as low as the values in the 
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Growth mechanisms and habits of snow crystals 2345 

needle-growth regime because needles are not observed at low temperature even with 
the higher water saturation.) Based on observed habits at water saturation, Wood et 
al. (2001) also argued that a,,-(, < a,,-, below -22°C. Explaining why the a,,+, and 
xb temperature trends are similar is speculative, but these quantities could be corre- 
lated through the surface concentration of adatoms. When the adatom concentration 
is high, the edge energy K and thus a,,-b should be low because there are more 
adatoms in contact with the step (analogous to a two-dimensional solid-melt inter- 
face); the increased adatom concentration can also significantly decrease the surface 
diffusion constant (Zinke-Allmang and Feldman 1988, Myers-Beaghton and 
Vvedensky 1990), which would decrease xb if the adatom desorption rate remains 
relatively constant (BCF). 

Low-supersaturation growth can be consistently different from high-super- 
saturation growth. If dislocations outcrop and make spiral steps on a face. they 
dominate growth at 6 values below a transition supersaturation that should increase 
with increasing a,,/o1, which, from equations (2) and (3), increases with K*X. Above 
- 16"C, dislocations dominate growth only at low supersaturations for both faces. 
On the basal face, xb continues to decrease to the lowest temperature measured 
(-30°C) and thus this transition supersaturation should remain low at low tempera- 
tures; however, on the prism face, and thus K ,  seems to increase with decreas- 
ing temperature (figure 4), which follows the BCF trend that also predicts that xp 
increases; hence, dislocations probably dominate prism-face growth at a greater 
range of supersaturation at low temperatures. It follows that the lowest supersatura- 
tion habits at low temperature should be tabular. Therefore, a hypothesis for the 
primary habits below -22°C is faster layer nucleation on the basal face near liquid 
water saturation, leading to columnar growth, but dislocation-aided growth usually 
leading to tabular forms at lower supersaturations. Because of variations in the 
activities, densities and positions of dislocations among crystals formed different 
ways and because of variations in supersaturation, this transition to mostly colum- 
nar growth could vary for different observations. This might explain the relatively 
wide range of reported transition temperatures for the low-temperature primary 
habit in figure 1. 

Other observations agree with this hypothesis. c-axis whisker growth suggests 
that o,,_, increases to several per cent at -40°C (Kobayashi 1965). These whiskers 
and the long, thin, solid columnar 'diamond dust' observed by Shimizu (1963) can 
form at low supersaturations and when relatively few dislocations are present in the 
crystal because columnar growth needs only one dislocation outcrop on a basal face, 
whereas tabular growth requires at least one outcrop on each of two adjacent prism 
faces. (If only one prism face grows, the increasing areas of the adjacent faces will 
make it vanish.) Finally, crystals in cirriform clouds are usually single or clusters of 
hollow columns thus indicating higher supersaturation growth (5 3.2,5), whereas 
tabular crystals generally have few lacuna (aufm Kampe et al. 1951), which indicates 
lower supersaturations. Also, low-supersaturation low-temperature experiments 
consistently predict tabular forms; Gonda and Koike (1982) and Gonda (1983) 
found tabular growth below -30°C; measured slopes of growth hillocks are steeper 
on the prism than on the basal face at -28.5"C (Gonda et al. 1996); finally, most 
low-temperature measurements of growth rates in negative crystals, in which spiral 
steps were observed, had faster prism-face growth (Furukawa and Kohata 1993). 
Although this hypothesis for low-temperature habits is speculative, it links a wide 
range of observations. The limiting r of about 1.4 for snow crystals on a fibre 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
4:

50
 2

1 
Ju

ly
 2

01
1 



2346 J. Nelson 

observed by Kobayashi (1961) are difficult to explain by this argument, but influ- 
ences from the fibre or the mixed growth mechanism described below (3 2.7) might 
explain this limiting r. 

2.1. Simultaneous spiral-step and layer nucleation growth 
The general situation of layer nucleation between spiral steps is hard to analyse 

accurately because of supersaturation gradients, variations in dislocation outcrops 
and fluctuations in step spacings. A simplified formula for the ratio of layer nuclea- 
tion to spiral-step growth rates (Lewis 1980) that fit data on potassium dihydrogen 
phosphate crystal growth (De Yoreo et al. 1994) predicts that the surface super- 
saturation should be about 30% higher than measured cr,, values for growth to be 
dominated by layer nucleation. This requires significantly larger ambient super- 
saturations but can be reached at the higher supersaturations in the atmosphere 
because critical supersaturations are so small. 

4 3. SECONDARY HABITS 

3.1. Effects of vapour diffusion 
Snow crystals grow thinner or narrower and with lacunae as the ambient super- 

saturation increases (figure 1); but, at a fixed temperature and supersaturation, 
crystals are more isometric and have fewer lacunae as the vapour diffusivity increases 
(Gonda 1980, Kobayashi 1958, Isono 1958). These phenomena arise because the gas 
surrounding the crystals causes supersaturation gradients normal to and along crys- 
tal surfaces respectively, as shown in this section. 

The vapour supersaturation 0 at the surface, averaged over about the vapour 
mean free path, is determined by vapour diffusion and the normal growth rate 
(rns-l). The latter depends on cr. For the basal face 

where Q is the volume per molecule in ice, Y is the mean molecular speed in the 
vapour, Neq is the equilibrium vapour density at the surface temperature (typically 
less than 1°C above ambient for solid polyhedral crystals (Nelson and Baker 1996)), 
O ( Z )  is the supersaturation at position z, and is the condensation coefficient where 
steps form at zb. The relation for da ld t  follows from equation (5) using obvious 
substitutions. Assuming that the tips of needle crystals are 0.5"C warmer than the 
ambient, the needle (Nla) growth rates after 10min growth as measured by 
Takahashi et al. (1991) give a b  = 1.0 x lOP3/a. This Qb(a)  relation is compared 
with that deduced for layer nucleation growth in figure 5. The intersection of the 
curves at c is near a = 0.5 with a surface supersaturation of O.l8O/o. This is consistent 
with the argument that only the basal face grows by layer nucleation because the 
surface supersaturation cannot rise much above the critical value of 0.15%. 
Conversely, cr must exceed 0.45% to nucleate layers on the adjacent prism faces, 
which requires a growth rate 4.5 times faster. Hence, the prism face probably grows 
by spiral steps at a supersaturation near 0.03%0, where curves a in figure 5 intersect. 
At -15.5"C, the dendritic (Ple) growth rate data of Takahashi et al. (1991) yield 
similar conclusions (figure 6); the estimated supersaturation at the tip is about 
0.55%, only slightly higher than the critical value, and Q = 0.8. Because cr must 
exceed 2.5% to nucleate steps on the basal face at this temperature, only the 
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0.001 0.002 0.003 0.004 0.005 0.0 06 

Figure 5 .  Estimated surface supersaturations on needle (Nla) crystals based on measured c 
and a data from Takahashi et al. (1991); solid curve c, inferred ~ ( 0 )  at -5.3”C for the 
basal face; solid curve a, inferred a(a) at -53°C for the prism. Physically, a must be 
less than the dotted line at one. The shaded curves are bounded by the two a(a)  
functions for layer nucleation (appendix A) fitted to crccr-h data in figure 4. The inter- 
section of the shaded curves and curve c estimates the surface supersaturation a, at the 
edge. The prism-face up needs to be about 0.0045 for layer nucleation, which is 
unlikely; hence, it is probably at the intersection of solid curve a with the broken 
line, which assumes spiral growth with ulp = 0.8%. 

prism face grows by layer nucleation. The basal face probably grows by spiral steps 
with CT near 0.1%, where curves c in figure 6 intersect. Hence, the measured growth 
rates of Ple and Nla  crystals indicate that the outermost tips grow by layer nuclea- 
tion and grow only in the fast-growth directions. Furthermore, that a is slightly less 
than one in both cases agrees with the observed small areas of the growing tips 

Use of equation (5) for both faces shows that the ratio of the basal to prism face 
growth rates, and hence r, depends on surface kinetics via the a values and step- 
source positions ( z b ,  z p ) .  The diffusion field affects r indirectly via its influence on 
the surface supersaturations and hence Q and not directly as used by KL to explain 
columnar growth at low temperatures. Chen and Lamb (1994) calculated r by using 
fixed high-supersaturation values of (Yh and ap and assumed that the surface super- 
saturation is proportional to the vapour gradient. However, because each Q clearly 
depends on surface supersaturation, growth habits are calculated here by integrating 
equation (5) for both faces with the following estimates of the surface supersatura- 
tion. 

Assuming steady-state vapour diffusion with diffusion constant D, uniform flux 
across each face, and a crystal larger than the vapour mean free path, the surface 
supersaturation is 

(§ 3.3). 

g(z )  = - QbCT(Zb)rbhb(Z, r )  - Qpg(Zp)rphp(Z, r) ,  (6) 
(appendix B) where rb = U V / ( ~ ~ ’ ~ D )  and rp = (ac)*’*(v/2D) are the mean radii of the 
total basal face and prism face areas respectively scaled by the vapour mean free path 
4D/v; hb(Z, r )  and h,(z, r)  are functions (equations (B 9)) that decrease at points z 
further from the centre of face b or p because the effect of the vapour density flux to 
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0 

a o  
0 

0 

0.005 0.01 0.015 0.02 0.025 

Figure 6. Estimated surface supersaturations on dendritic (Ple) crystals based on measured c 
and a data from Takahashi et al. (1991); solid curve a, inferred a(c) at - 14.4”C for the 
prism face; solid curve c, inferred a(.) at - 14.4”C for the basal. The shaded curves are 
the same as those in figure 5 except that they are fitted to uccr-p data. The intersection 
of the shaded curves and curve a estimates the surface supersaturation a, at the edge. 
The basal-face c b  needs to be about 0.026 for layer nucleation, which is unlikely; 
hence, it is probably at the intersection of solid curve c with the broken line, which 
assumes spiral growth with g l b  = 2.5%. 

a face diminishes at points further from the face (see figures B 1 and B2). Equation 
(6) is understood by picturing the crystal faces as interacting via their ability to 
deplete the surrounding air of vapour. The strength of the interaction depends on 
the shape hb and h,, the sizes rb and r, of each face and the growth rate of each face 
(proportional to ao). For instance, if both growth rates are zero (a = 0), there is no 
vapour depletion and all surface supersaturations equal the ambient value om. 
Conversely, if there is only growth on the basal face (a, = 0) then “ (2 )  decreases 
on the left-hand side of the equation as CEbrbhb(Z) increases because vapour is 
depleted by growth on the basal face; furthermore, this decrease is greater for z 
nearer the basal face because hb is larger there, as expected and predicted. The 
analogous equation for diffusion to a sphere has just one flux term with h = i, 
which is close to that for hb and h, at r = 1 (see figures B 1 and B2). 

To see which growth mechanisms explain the growth habits in Gonda’s (1980) 
experiments, growth rates of each face for various at, and ap  were calculated using 
equations (5) and (6). Starting with 4 pm isometric crystals, growth rates were inte- 
grated until the crystals fell about 5cm to the substrate. This distance is small 
enough that few crystals developed lacunae, thus allowing the finite cylinder to be 
a good approximation. Libbrecht (1999) did related calculations with a finite cylin- 
der but instead used crystal shapes from Yamashita (1 974) to estimate the condensa- 
tion coefficients. However, because Yamashita’s crystals fell 15 m and had lacunae, 
Libbrecht’s calculations probably overestimated the values. Gonda’s (1980) data 
were used because they are more complete, but Isono (1958), Kobayashi (1958) 
and Beckmann (1982) obtained results consistent with Gonda’s data. 

In the curves in figure 7, the general trend at high vapour diffusivities is due to 
the smaller vapour gradients normal to the surface because there is less air to impede 
vapour transport. Without lacunae, the aspect ratio should approach the ratio of the 
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DIFFUSION CONSTANT (cm2 s-I) 
0.1 0.2 0.5 1 2 5 

Figure 7 .  Calculated r for layer nucleation and spiral step growth compared with Gonda’s 
(1980) measurements (0). In the experiments, small supercooled drops were put in a 
chamber where a small fraction of them froze, grew and then fell approximately 5 cm 
on to a glass substrate to be measured. The temperature was -7°C and the gas 
pressure was varied. Curve 1 represents r for a crystal initially with c = a = 2 pm 
that grew by spiral steps with u lb  = 4% and olP = 8%. The crystal for curve 2 had 
the same initial size but grew at low supersaturations by spiral steps with fflb = 0.4% 
and olP = 0.8% and by layer nucleation (occr-b = 0.17% and C T ~ ~ - ~  = 0.3%) with equal 
terrace collection (equation (A 6)) at higher surface supersaturations. Curve 3 used 
spiral-step growth as for curve 1 except that o l b  = 0.4% and olP = 0.8%. Curve 4 is 
like curve 2 except only layer nucleation occurred. The broken curve is identical with 
curve 1 ,  except that c = a = 6 pm. In this and following figures, the hexagonal crystal 
sketches are to aid interpretation only; all calculations used cylinders. 

sticking coefficients. As om is 7%, values of o1 less than this will lead to a saturation 
of growth step density so that both fib and aP approach the sticking coefficients on 
each face. Therefore, data at high vapour diffusivities indicate that this ratio is unity. 
As it is unlikely that both sticking coefficients are equal unless they are both the 
maximum value of one, Gonda’s (1980) data supports previously analysed data 
(Nelson 1993) that the sticking coefficients are near unity. In curve 1 of figure 7, 
one of the characteristic supersaturations is greater than the ambient value and so 
isometric growth does not occur. Because the data show isometric growth at high 
diffusivities, the actual values of Clb and olP must be smaller than the ambient value 
of 7%; for instance, curve 3 agrees with the data when (Tlb = 0.4% and olP = 0.8%. 
If instead, only layer nucleation occurs, the step density saturates too easily at the 
high surface supersaturations from the larger diffusivities (curve 4); also, growth is 
too anisotropic at the low supersaturations from small vapour diffusivities unless 
spiral steps are included (curve 2). The broken curve in figure 7 shows that initially 
larger isometric crystals cannot develop large r values in such a short time. This is 
because they fall to the substrate sooner and grow more slowly. In conclusion, the 
habits of small snow crystals at -7°C are explained by a spiral-step-like mechanism 
with UIb and ulP near 0.4% and 0.8% respectively. 
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Gonda's (1980) data near - 15°C and 16% ambient supersaturation is similarly 
analysed in figure 8. Spiral-step growth fits high-vapour diffusivity data when 
olb = 0.5% and glp = 2.0%, which are close to the directly measured values of 
1.1% and 3.1% of Gonda et al. (1994). The discrepancy could indicate coupling 
of vapour and surface diffusion ($2.4). However, the data a t  low vapour diffusivities 
are not fitted by spiral growth, which produces shapes that are too isometric but, 
unlike the columnar crystals at  -7"C, the tabular crystals had lacunae at the lowest 
diffusivities, and thus probably grew by layer nucleation, which has a greater growth 
anisotropy than spiral growth. Lacunary growth is also more anisotropic because 
arms growing from crystal corners have higher surface supersaturations than the 
centre of the basal face (53.2) .  As with columnar growth at  -7"C, layer nucleation 
by itself cannot easily explain the data. In these experiments, the crystal formed by 
the freezing of droplets, which probably had large stresses from the expansion upon 
freezing that could produce dislocations. Hence, the comparison of calculation with 
experiment supports the argument that the growth of small snow crystals can be 
explained by spiral steps, but layer nucleation is required to explain the greater 
growth anisotropies with lacunae (Nelson and Knight 1998). Beckmann (1982) 
argued that the trend towards isometric growth as pressure decreased was due to 
a lessening of impurity blocking at steps (p  in equation (3)), but these calculations 
showed that such surface effects are not needed to explain the data. 

These comparisons with calculation have uncertainties: fall distances, initial 
crystal sizes, varying ambient supersaturations, adatom migration over the edges 
during the initial growth, and uncertainties in the condensation coefficients from 
vapour-surface coupling. Nevertheless, they show that growth a t  small sizes prob- 
ably occurs by a defect mechanism similar to or the same as spiral steps with 
characteristic supersaturations near the measured critical supersaturations, but 
layer nucleation could influence growth when the crystals become larger. 

t 
0.1 0.2 0.5 1 2 5 

DIFFUSION CONSTANT (cm2 s-1) 

Figure 8. Gonda's (1980) data for growth at -15°C (a), with conditions and calculated 
curves as described in figure 7. Curve 1 used spiral steps with glb = 2.6% and 
glP = 0.4% and initially c = a = 2 pm. Curve 2 used olb = 2.0% and oIp = 0.5% 
but otherwise the same as curve 1. Curve 3 used layer nucleation with equal terrace 
collection (equation (A 6)) and "cr-b = 2.6% and a,,.-, = 0.4%. 
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Growth mechanisms and habits of snow crystals 2351 

The trend towards extreme aspect ratios as the supersaturation increases or the 
crystals become larger also fits predictions of spiral step and layer nucleation growth. 
For instance, near - 15°C and 1 % supersaturation, near-isometric growth is com- 
mon (Kobayashi 1961, Rottner and Vali 1974, Wang and Fukuta 1985) but, at 16% 
supersaturation, r x 0.01 (Takahashi et al. 1991). Spiral-step growth can dominate 
over layer nucleation when crystals are small or the supersaturation is low, but 
otherwise layer nucleation dominates over spiral steps because it occurs wherever 
the surface supersaturation is high enough and its rate increases more rapidly with 
increasing supersaturation. Needles and dendrite arms protrude into regions of 
higher supersaturation; furthermore, they are unlikely to contain spiral steps as X- 
ray measurements do not indicate the formation of dislocations during growth 
(McKnight and Hallett 1978, Mizuno 1978). Therefore, extreme growth anisotropy 
from layer nucleation can also occur on imperfect crystals in air when nearly perfect 
fast-growing regions of a face extend outwards from slow-growing imperfect regions. 

At low ambient supersaturations, u from equation (6) is initially high if rp and t), 
are initially about 4 (c,a M 1 pm at 1 atm) or less but quickly decreases during 
growth. The adatom supersaturation can be lower still because of nearby molecular 
sinks from permanent steps (9 2.7). Therefore, if the ambient supersaturation is 
sufficiently low, even if above ucr, layer nucleation might never dominate growth. 
For example, when spiral steps in the face centres control growth with g l b  = 2.0% 
and ulp = 0.5%, and both a and c equal 7 pm, the decrease is still about 15% during 
growth, which brings the surface supersaturation below that needed to nucleate new 
layers at I %  and 2% ambient supersaturations. The time evolution of r for these 
cases is shown in figure 9. Although ab/(Yp is 0.25 at the same low u, instead r 
becomes very nearly 0.8 because u on the prism face is lower than that on the basal 
face. The higher supersaturation causes faster initial changes in r because of the 
faster growth rate, but slower changes in r later because the crystal is larger. This 
limiting r is slightly larger than that measured by Kobayashi at between -10 and 
-20°C and less than 3% ambient supersaturation; however, the calculations shown 
in figure 9 also indicate that r is significantly smaller when the step sources are at the 
edge. Because the spiral steps cannot always be exactly in the face centres, the 
agreement of calculation with measurement is well within the variations in measured 
r. Therefore spiral steps can explain the low-supersaturation habits, and their 
various positions on a face can lead to considerable variations in r. 

At higher supersaturations, the edge area remains above the critical value as the 
crystal grows so that nucleation should eventually occur there. This leads to lacunae 
sooner than at lower supersaturations. With lacunae, only a relatively small area on 
the fast-growing face has an appreciable growth rate. Because decreasing the face 
area increases the supersaturation on that face (equation (6)), the rate of layer 
nucleation increases, which further decreases the rim area ( 5  4). An accurate calcula- 
tion of this phenomenon goes beyond the approximations here but is described 
qualitatively through the example in figure 10. For this figure, growth occurred 
only along the outer rim of the prism face to simulate lacunae: rp in equation (6) 
was kept a twentieth of the actual size of the face. At -15°C and water saturation 
(l6%0), r and the crystal size very nearly matched the measured values of Takahashi 
et aE. (1991) at -14.4"C and water saturation; after 20min growth, r and the disc 
radii a were 0.009 and 1.6mm respectively for the calculation, versus 0.01 and 
1.4mm for the measurements. Without the lacunae, the width would have been 
more than ten times smaller. Also, the calculated ue decreased to about 0.58% 
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2352 J. Nelson 

Figure 9. Calculated r for spiral-step growth at low supersaturations, an ambient tempera- 
ture of -15"C, air at 1 atm, and comparison with Kobayashi's (1961) measurements 
under approximately the same conditions. Plotted curves assume C7lb = 2.0% and 
olP = 0.5%, face-centred step sources and 14pm initial widths. For 1% and 2% 
ambient supersaturations, the widths after 20 min were 50 and 70 pm respectively. If 
instead the step sources were at the edge, r = 0.40 and 0.35 at 20min for 1% and 2% 
supersaturations respectively. The right-hand ordinate is for larger crystals grown at 
2% supersaturation. The large open diamonds are the initial (top) and final (bottom) 
calculated r values for initial and final widths of 70 and 200 pm respectively and face- 
centred step sources. With edge step sources, r = 0.51 at 200pm. The crosses are 
measured values for the same sizes and approximately the same growth times. The 
horizontal dotted line is an average limiting r & 0.07 value measured for about nine 
crystals with initial widths averaging about 90 pm. 

after 20min, in close agreement with the estimated 0.57% measured value in $3.3. 
The calculated supersaturation at the basal centre was 0.05% at 20min, which is half 
that estimated from figure 6. This calculation is unrealistic in detail because it has 
cylindrical symmetry instead of hexagonal and because the Y,, value, which is 20 
times smaller, poorly describes lacunary growth; nevertheless, the transition in figure 
1 from solid thick plate (Clg) in figure 9 to sector plate (Plc) in figure 10 as the 
supersaturation increases can thus be explained quantitatively using lacunae. 
Furthermore, this argument also explains the transition in figure 1 from solid column 
(Cle) to elementary sheath (N lc) with increasing supersaturation when the columnar 
functions for (Yb and ap are used. Therefore, lacunae are essential for extreme aspect 
ratios at higher supersaturations when spiral steps are present. To complete the 
explanation, it is shown below ( 5  3.2) why lacunae form at higher supersaturations 
and smaller vapour diffusivities. 

3.2. Lacuna formation on snow crystals 
Supersaturation is known to vary across crystal faces (Humphreys-Owen 1949, 

Seeger 1953). Thus, higher-supersaturation regions on a face would always grow 
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Figure 10. Calculated r for layer nucleation growth on the edge of the prism. Here 
ocr-p = 0.45% and only 5% of the rim area grew, whereas basal growth was by a 
spiral step in the face centre with olb = 2.0%. Initially, a = 7pm and r = 1. The 
ambient temperature was -15°C and the ambient supersaturation was 16% (water 
saturation). Growth took place in air at 1 atm, but air flow was neglected. The broken 
curve is from Ple data of Takahashi et al. (1991) for the same conditions. 

faster than lower-supersaturation regions except that the steps become closer in the 
latter regions (Chernov 1974, Frank 1974), thus becoming more efficient molecular 
sinks (i.e. a increases). Monte Carlo calculations of cubic crystals in a diffusion field 
show that higher-supersaturation edge regions on a face will grow faster than the 
centre of a face when the crystal exceeds a certain size that decreases with increasing 
supersaturation (Xiao et al. 1991). Calculations of finite cylinders lead to the same 
conclusion but also show that lacunae should usually form on only the fast-growing 
face of most snow crystals, except at low supersaturations, which supports the data 
in figure 1 (Nelson and Baker 1996). Yokoyama and Kuroda (1990) calculated 
spiral-step growth on two-dimensional crystals numerically and found that six 
main arms formed at high supersaturations, but their restriction to two dimensions 
and neglect of Iayer nucleation make their results unrealistic to explain other details 
of snow crystals. 

According to equation (9, across the face of a uniformly-growing crystal 

an = uniform. (7) 

At the step sources ffb and ap depend upon the local supersaturation, the step 
formation mechanism, and surface properties but, everywhere else, a depends on 
how easily molecules reach steps, which depends primarily on the step separation y 
divided by the migration distance x :  a + a(y /x )  (BCF). If steps form at the edge of 
the prism face with condensation coefficient ap, equation (7) applied to the edge and 
centre of the face becomes 
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2354 J. Nelson 

where the subscripts e and p indicate prism face edge and centre respectively. The last 
inequality is because condensation coefficients cannot exceed one. However, as a 
crystal grows or the supersaturation increases, the growth rate at  the edge (left- 
hand side) exceeds that in the centre (right-hand side) when 

Oe 

OP 
ap- 2 1. (9) 

This is the condition for lacunae to form; thus the left-hand side is called the prism- 
face lacuna parameter. Fluxes to the crystal faces and vapour diffusion determine 
a(z) across each face, whereas flux uniformity on each face determines how a ( y / x p )  
varies across each face. This a ( y / x P )  is larger where a ( z )  is smaller (figure 1 l), but, 
because Q must be less than one, this can only occur if apge is below the minimum in 
~ ( z )  as is line i in figure 11. When the supersaturation rises, thus causing apse to rise 
to the level ii, then the step spacing must decrease to zero near the arrows because 
a = 1 there, and growth is slower between the points owing to the smaller [T. This 
first occurs when the equality in equation (9) holds. Because a single number used for 
a cannot exactly describe the details of molecular incorporation in steps, the right- 
hand side of equation (9) is probably not exactly one; however, the conclusions here 
are insensitive to its value. Equations ( 5 ) ,  (6) and (9) predict that increases in ambient 
supersaturation and crystal size can lead to lacunary growth as is commonly 
observed (for example Kobayashi (1961) and Gonda and Koike (1982)) but, in 
some cases, an increase in crystal size will prevent lacunae from forming because 
the surface supersaturation drops during growth. 

The lacuna parameter factors ap and ue/aP depend differently on r. crystal size 
and ambient supersaturation, and their dependences differ between the fast- and 
slow-growing faces. On the fast-growing face, the first factor ap  generally decreases 
during growth as the crystal collects more molecules and lowers the local super- 

Figure 11. Formation of lacunae due to a(z) gradients on a prism face. The dotted lines i and 
ii indicate two possible values of apue that must equal aa(z) across the face for uni- 
form growth. If line i is apse, the face grows uniformly because the steps in the centre 
capture molecules with less than 100% efficiency (a < 1). For line ii, uniform growth 
requires an impossible Q > I between the arrows; therefore this central region between 
the arrows instead grows more slowly than the outer rim and thus approximates the 
initial boundary of the lacunae. 
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Growth mechanisms and hubits of snow crystals 2355 

saturation, whereas the second factor me/mp usually increases during growth because 
the edge and centre of the face are further apart. So the lacuna parameter can 
increase or decrease during growth at  constant ambient supersaturation depending 
on how rapidly aP changes with the surface supersaturation. However, when the 
ambient supersaturation increases, both factors increase and lead to lacunary 
growth. This prediction agrees with the studies of Chernov (1974), Yokoyama and 
Kuroda (1990) and Xiao et ul. (1991) but contrasts with the work of Mason (1993) in 
which lacunary growth depends only on crystal size. 

As an example, consider the case where the prism face is growing from the edge 
by layer nucleation without influence from spiral steps, and the basal face grows 
from a spiral in the centre. Except for very small crystals, the formation of lacunae 
mostly depends on the ratios of the ambient supersaturation to the characteristic 
supersaturations for each face as indicated by figure 12. In that figure, the lacuna 
parameter is plotted for three crystal sizes as a function of supersaturation. For 
example, when the crystal size is 100 times the vapour mean free path (about 
11 pm at 1 atm), the lacuna parameter increases slowly with supersaturation from 
very small values and then abruptly exceeds one above 2.3% ambient supersatura- 
tion. This abrupt rise follows from equation (6); any increase in spa, is amplified by 
its product with rphp (35 in this case), which forces cp to decrease rapidly to zero, 
thus causing the lacuna parameter to increase at 2.3%. The more rapid rise in the 
lacuna parameter at larger rp  shown in figure 12 is thus understood. This example 
also shows that larger crystals growing solely by layer nucleation are less likely to 
form lacunae a t  a given ambient supersaturation. Hence, if a crystal is initially 
lacunae free, it might not develop lacunae as it grows larger or, if this crystal does 
initially have lacunae, the face might become complete as the crystal grows, thus 

a 

00 
Ambient supersaturation 0 

Figure 12. Formation of lacunae on a prism face when the prism face grows by layer 
nucleation at the edge (equations (A3) and (A4)) with uccr-p = 0.45% and basal 
growth by a spiral step with u1 = 2.5%~ calculated prism-face lacuna parameter for 
r = 1 and crystal sizes with rp = 10,100 and 1000. Lacunae should form as the curves 
exceed one. 
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2356 J.  Nelson 

forming interior air voids as observed on substrate-grown crystals (Gonda and 
Koike 1982, 1983). That increasing size is usually found to produce lacunae on 
snow crystals a t  higher temperatures (Kobayashi 1961) is thus further evidence 
that the fast-growing, complete face usually does not grow solely by layer nucleation. 
Calculating the formation of lacunae when spiral steps and layer nucleation occur 
simultaneously requires more surface growth parameters than are available from 
experiment; however, in such a case, a should be approximately proportional to 
a", where n is between that for pure spiral growth ( n  "N 1-2) and that for pure 
layer nucleation ( n  M 10-100). To show how a less supersaturation-sensitive con- 
densation coefficient would affect the formation of lacunae, the prism-face lacuna 
parameter versus crystal size for aP IX a: is plotted in figure 13. For example, when 
r = 1 the lacuna parameter first decreases with growth but, when the crystal size 
exceeds about 400 times the vapour mean free path (45 pm at 1 atm), lacunae should 
form. This is comparable with the value of 75pm found by Kobayashi (1961) for 
growth between -5 and - 10°C but, when cyP 0: a", the lacuna parameter decreased 
during growth as it did for pure nucleation growth (figure 12); that is a fast rate of 
increase in step formation with increasing surface supersaturation leads to an 
increased likelihood that the facet remains complete as it grows because ap decreases 
more rapidly with increasing size. 

Because the fast-growing face can be the largest total vapour sink, the vapour 
density can be more depleted there and thus cause the surface supersaturation to be 
largest in the centre of the slow-growing face. Therefore, this slow face is much less 
likely to develop lacunae than the fast-growing face; equivalently, the lacuna para- 
meter of the slow face decreases rapidly as the fast-growing face becomes larger if the 
fast-growing face is lacuna free (figure 14). However, when the fast-growing face 
develops lacunae, thus reducing its vapour sink, the slow faces can then develop 
lacunae in their centres. The latter is probably more common when growth is nearly 

I .  

0 200 400 600 800 1000 1200 1400 

av/4D 
Figure 13. Formation of lacunae on a prism face that has an edge step source on the prism 

with cyp = (ae/0.0048)5 and face-centred spiral step growth on the basal face with 
a b  = ab/0.025r calculated lacuna parameter a t  1 % ambient supersaturation as a func- 
tion of r and crystal size. Lacunae should form as the curves exceed one. 
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Growth mechanisms and habits of snow crystals 2357 

Figure 14. Uniform facet growth on the basal face during tabular growth: basal-face lacuna 
parameters for increasing crystal sizes with urn = 5% when the prism grows by a step 
source at the edge as ap = (~~J0.0045)~, but the basal face step source is either at the 
edge or the face centre, whichever has the greater supersaturation, with 
a b  = ( ~ / 0 . 0 2 5 ) ~ .  Curve a shows that the basal face cannot form lacunae when 
r = I .  The highest supersaturation is the centre of the basal face, and the prism 
face lacuna parameter exceeded one. For curve b, r = 1 and the prism face. grows 
only along the rim with rp = (ac)'/'v/20D, that is a tenth of its effective radius. The 
basal face can form lacunae only at small sizes. The break in the curve near 30, and at 
larger sizes for curves c :fnd d, arises because the region of highest supersaturation 
moves to the centre of die basal face. Curve c is the same as curve a except that 
r = 0.01. The lacuna parameter of the prism face. exceeded one on this thin tabular 
crystal. For curve d, r = 0.01 and rP = ( a ~ ) ' / ~ v / 2 0 D .  Figures 13 and 14 show that one 
face can grow uniformly as the other face forms lacunae. 

isometric (e.g. see photographs of crystals grown near -9 and -21°C in the paper by 
Takahashi et al. (1991) and the crystal at -7.7"C in the paper by Yamashita (1974)). 

In summary, calculations of step motion on a finite cylinder in a diffusion field 
with measured ucr values and reasonable spiral-step characteristic supersaturations 
o1 predict sizes and supersaturations at which lacunae first form, in approximate 
agreement with observations. 

3.3. Dendritic growth 
For most people, the term snow crystal means dendritic crystal (Ple) even 

though the latter occurs only in a small range of temperatures and supersaturations 
(figure 1). One reason is that dendritic crystals grow larger than those grown in other 
cloud conditions (Takahashi et af. 1991) and thus more easily fall to the ground 
without completely evaporating or melting. Another reason is aesthetics; as Nittman 
and Stanley (1986) wrote '. . . every child can distinguish a [snow crystal] from other 
growth forms'. They proposed a model for dendrite growth that ignores facetting but 
modelled the overall pattern reasonably well. Instead, the focus here is on just the tip 
of the dendrite and the equations used are based on layer nucleation and step motion 
consistent with that in 3 3.2. 
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2358 J. Nelson 

Near -15°C and at ambient supersaturations below water saturation (l6%), 
branches have large obvious facets (P1 b). At higher supersaturations, the prism 
facet area near the tip decreases (Plc) and apparently vanishes near 18% ambient 
supersaturation (Ple). However, the facets might remain during growth but be 
unnoticed because, firstly, of the difficulty observing small facets on a rapidly grow- 
ing interface and, secondly, before reaching the ground, snow crystals generally fall 
through undersaturated air that causes rounding. Differences in facet size can also be 
seen on different branches on the same crystal. Figure 15 shows such a dendrite: the 
outermost tips appears fully rounded and had grown in a region of higher surface 
supersaturation compared with branch tips closer to the centre that have obvious 
prism facets. 

Kinetic roughening and vapour-liquid-solid (VLS) growth cannot round the tips 
during growth by the following argument. The former occurs when the Gibbs free 
energy of the critical embryo decreases to kT (Elwenspoek and van der Eerden 
1987). Because the free energy is inversely proportional to the surface supersatura- 
tion a,, kinetic roughening occurs above a certain supersaturation. From equations 
(A 1) and (A2) (appendix A) and measured acrPp values, this is about 19%. Instead, 
VLS growth requires a, near liquid water saturation or 16%. The observed growth 
rate of dendrites and equation (5) allow estimates of the surface supersaturation at 
the tip: 

Figure IS.  A dendrite (Ple) collected at ground level. (Photograph courtesy of Charles 
Knight.) 
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Growth mechanisms and habits of snow crystals 2359 

where T, is the crystal temperature at the tip. According to the Ple crystal growth 
measurements of Takahashi et al. (1 99 I), da/ dt = 1.2 pm sC1 after growth for 10 min 
at - 14.4"C. Assuming that the tip is completely rounded so that a, M 1 and neglect- 
ing both the Gibbs-Thompson effect and the temperature rise from latent heating, 
the surface supersaturation from equation (10) is only 0.52%, far below the values 
estimated for kinetic roughening and VLS growth. (Including Gibbs-Thompson and 
latent heating only worsen this discrepancy.) Therefore, on either side of the tip, 
small facets probably exist, which grow at 30" to the tip direction. Putting the cosine of 
this angle in the numerator and T, = 13.9"C (latent heating) in the denominator gives 
upge = 0.0044. The layer nucleation formula (equations (A 4) and (A 5) )  with 
gcr = 0.45% predicts a, = 0.0057 and cup = 0.78, the latter value of which implies 
that the step spacing y is slightly less than xp (BCF). If xp M xb from figure 4 and several 
steps were on the facet, then the facet tip was at least 4pm across during growth. 

The tips of sector plates (Plb) after 10min growth had a smaller growth rate, 
0.26pmsC' (Takahashi et al. 1991), resulting in apse = 0.0008 with the same 
assumptions as for the Ple dendrite. Instead of an abrupt transition from faceted 
to rough growth at the tip as supersaturation increases, a continually decreasing 
facet area is possible (figure 16). The long and short arrows in figure 16(a) show 
the highest and lowest supersaturation positions on the facet respectively, and the 
supersaturation using the layer nucleation condensation coefficient described above 
is plotted on the right. Assuming that the edge of the facet defines the point where 
a ( y / x p )  = 1, then a relatively large difference in supersaturation across the facet 
indicates a relatively large facet area. Increasing the ambient supersaturation (figure 
16 (b)) can decrease the facet area because the higher supersaturation at the tip raises 
ap and thus the a = 1 point on the facet is closer to the tip, and also because the 
supersaturation gradient near the surface probably increases as the tip sticks out 
further from the bulk of the crystal. The trend continues in figure 16(c) to further 
decrease the facet area. Frank (1974) also argued for a decreasing area of facet with 
increasing supersaturation owing to the lacunary phenomenon but suggested instead 
that prism faces vanish at the tip during dendritic growth. Tiller (1991) and Nelson 
and Knight (1998) suggested that the facets, however small, on either side of the tip 
ensure that the arm strictly grows along (1210). This direction is also preferred by 
the rough growth of the tip and branches of ice dendrites in the melt, but adherence 
to this direction is not as strict (Koo e f  al. 1991). The electrically enhanced dendritic 
growth with growth rates greater than 3.5pms-' is consistent with rough tips 
(Libbrecht and Tanusheva 1998) but does not apply to atmospheric conditions. 

The region of dendritic and needle growth occurs where the growth rate aniso- 
tropy from layer nucleation is largest, as indicated by the ratio of basal to prism 
critical supersaturations (although it is not yet clear whether or not a maximum 
exists at - 16°C). This agrees with the prediction in 9 3.2; a large difference in critical 
supersaturations more easily leads to lacunae and faster growth rates on the face 
with the lower critical supersaturation. 

3.4. Adatom migration between faces 
Mason et al. (1963) and Frank (1982) argued that a fast-growing face draws 

adatoms from an adjoining face, thus reducing the latter's layer nucleation rate near 
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2360 J. Nelson 

/ 

larger o, 
Plc 0.005 

O' 0.001 0.003 

oe 

Figure 16. Sketch of the changing tip shape of an initially broad-branch (Plb) crystal as the 
ambient supersaturation increases to become a dendrite (Ple). (a) The tip of a P lb  
crystal. Surface supersaturations at the arrows are estimated in plots on the right and 
are explained in the text. (b), ( c )  At higher ambient supersaturations, the facet area at 
the tip decreases in (6)  a PIC crystal and (c) a P le  crystal. Qualitatively, the same 
transition occurs at a fixed ambient supersaturation as the crystal grows (Takahashi el 
al. 1991). 

the edge and lowering its growth rate. This effect can be large if the slow-growing 
face is about one surface migration distance across or less but, on larger faces, 
layers can nucleate a mean migration distance or more from the edge where the 
surface supersaturation is nearly that at the edge. KL argued that adatom migration 
from the basal to the thin prism faces of dendrites increases their growth rate, 
whereas Mason (1993) included both effects to estimate r on small crystals. 
Hallett (1961) has evidence for adatom migration from the basal to prism face of 
thin ice plates. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
4:

50
 2

1 
Ju

ly
 2

01
1 



Growth mechanisms and habits of snow crystals 2361 

Migration between faces will speed up growth of the face that receives net mole- 
cules from the adjoining faces. For example, assume a tabular P le  crystal, x b  = x p ,  
no additional energy barrier for migration between faces and that one step always 
exists on the prism but none on the adjoining basal faces. The growth rate of the 
prism face is thus the step height h divided by the time for the step to cross the face. 
With collection of adatoms from both upper and lower terraces, the latter time is the 
face thickness 2c divided by the step velocity for an isolated step. Thus 

da X b  V 

dt c 
- = - RN,,ae 4, 

which agrees with the work of Sears (1956) but is much less than that estimated by 
KL. Migration between faces thus increases the growth rate by the factor xb/c over 
the maximum (ap = 1) growth rate in equation (5), but by a smaller amount if 
additional steps are on or within xb of the prism face. If xb M 1-5pm (Mason et 
al. 1963, Gonda et al. 1996), then migration between faces has a significant effect 
only when c or a is less than about 5 pm. This is close to the thickness at which Keller 
et al. (1980) observed a transition from rounded discs to faceted plates. The latter 
workers proposed face-face migration as an explanation for this transition, which is 
supported by equation (1 1). Similarly, the non-faceted growth on 'fern-like' crystals 
observed by Yamashita and Asano (1984) was observed on only the thinner crystals 
that had c M 5 pm. 

Comparison of equation (1 1) with equation (5) shows that xb/C can substitute for 
cy in the growth rate equation; in particular, it can substitute for the u plotted in 
figure 6 that was used to estimate oe at the tip of a dendrite growing at water 
saturation. To nucleate new layers, 0, must be larger than about 0.005; yet, at a, 
above about 0.007, layer nucleation is too fast to explain dendritic growth rates. 
Because layers must nucleate even when face-face migration affects growth rates, 
this migration could only have a small effect on dendritic growth rates if 
0.005 < a, < 0.007; hence, face-face migration can have only a limited effect on 
dendrites at water saturation or below. 

Face-face migration can also occur between prism faces. If xb is replaced by xp 
and if c is replaced by the width w of a narrow prism face between wider prism faces, 
then equation (1 1) predicts that, when w z xp or smaller, w could decrease to zero 
even when other prism faces grow much larger than xp .  This decrease is because of 
the 120" angle between adjacent prism facets; a prism face that grows at least twice as 
fast as the neighbouring facets will vanish. Hence, this migration might explain why 
trigonal, rhombic and pentagonal ice crystals required very small nuclei (Yamashita 
1973) but does not explain the prevalence of trigonal shapes. The latter could be due 
to asymmetric vapour diffusion contours across prism-prism edges on crystals with- 
out perfect hexagonal symmetry. 

3.5. Airflow 
Air flow around free-falling snow crystals affects their shape: dendrites (Ple) 

grow at lower supersaturations with air flow (figure l), and double-plate crystals 
are much smaller on the downwind plate (Iwai 1983); also, frost growth is faster and 
has more lacunae with air flow (Alena et al. 1990) because vapour-rich air is brought 
closer to the crystal surface, particularly near the edges (Pitter et a/. 1974, Ji and 
Wang 1990, 1991). Larger free-falling crystals are more likely to be affected by air 
flow because the time to establish a steady-state diffusion field increases as the crystal 
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2362 J. Nelson 

size squared (Mason 1953). Thus, at a certain size, the crystal falls through the 
surrounding vapour diffusion region before this region becomes depleted of vapour. 
Growth rate measurements indicate that this size is about 250 pm (Takahashi et al. 
1991). Snow crystals of this size have already established their primary habit and 
generally have lacunae; therefore, according to 5 3.1 and 3.3, they should be growing 
primarily by layer nucleation near the basal-prism edges. Such crystals fall broadside 
to the air flow on average; hence, the air flow passes closest to the basal-prism edges 
on tabular crystals and closest to the prism-prism edges on columnar shapes (figure 
17). This is supported both by numerical calculations (Ji and Wang 1990, 1991) and 
by observed riming, the latter of which is primarily at the basal-prism edges of 
tabular crystals but uniform along the prism faces of columnar crystals (Knight 
and Knight 1973). Therefore, air flow probably causes the greatest increase in sur- 
face supersaturation where the prism-face steps are nucleated on tabular crystals and 
causes a more uniform increase in surface supersaturation on columnar crystals. This 
should increase the growth rate anisotropy for all crystals, but much more for the 
tabular crystals because the face that nucleates steps can rapidly increase its nuclea- 
tion rate, whereas the adjoining face can remain below its critical value ($3.5). In 

b) 
Figure 17. Differences in the vapour flow around (a) tabular and (b) columnar crystals. 
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Growth mechanisms and habits of snow crystals 2363 

support of this, Takahashi et al. (1991) found that air flow increased the growth rate 
of tabular crystals but not columnar crystals. In addition, the larger supersaturation 
gradient from air flow can make the arms thinner and affect the relative sizes of 
branches on a dendrite (Hallett and Knight 1994). 

$4. GROWTH FORMS UNDER CHANGING CONDITIONS 
Snow crystals with both tabular and columnar features such as capped columns, 

scroll crystals and crown crystals regularly form in the atmosphere. Nakaya (1954) 
showed that combinations, such as the capped column-crown crystal in figure 18, 
form when a growing crystal transfers between different primary habit temperatures. 
Mason et al. (1963) argued that these occur when adatoms migrate from the slow- 
growing face to the region within one mean migration distance of the edge on the 
fast-growing face. However, this implies that they would also form at any super- 
saturation which they do not; crystals maintain their solid form as they gradually 
change to the new primary habit at very low supersaturations (Kobayashi 1961). 

Instead, ideas in 53.2 about the formation of lacunae can explain these habits. 
For example, consider a solid column growing at -8°C (figure 19) that suddenly 
transfers to -15°C. The prism face is initially completely flat because oP is small; 
hence, it can be represented by line i in figure 11. When the temperature changes to 
- 15"C, ap rapidly increases and Qb decreases; thus line i moves up above the level 
needed to form lacunae, represented as line ii. Dropping the a b  term in equation (6) 
gives 

op E om - apaerphp(O, I'). (12) 

So, the supersaturation at the centre of the prism face a,, drops rapidly as cyp 

increases. Thus, as line i moves up to line ii, the bottom of the supersaturation 
curve drops to a much lower value ensuring that the points at which Q: E 1, indicated 

1 mm 
Figure 18. A capped column with crown features. Because of temperature changes, growth 

was first columnar, then tabular and finally columnar. (Photograph courtesy of 
Charles Knight.) 
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Figure 19. Formation of a capped column. The curves indicate the fractional area of lacunae 
on the prism face that grows more slowly than the rim; for example 0.8 means a 
rim area of width 10% of the crystal length 2c grows more rapidly than the centre 
of the face. q, = 140, = (0~/0 .025)~ ,  ap = (0,/0.0045)~ and r = 20 (-1 or r = 1 
(- - -). To estimate the area of the rim, the supersaturation was calculated at the centre 
and edge of the prism face (appendix B) and assumed to vary quadratically across the 
face. 

by arrows in figure 11, move close to the face edge. Therefore, soon after the tem- 
perature change, growth will be faster at the edge region outside the arrows. Once 
this region grows out from the central column, a cap forms and grows more rapidly 
because its area is smaller and thus does not deplete the surrounding vapour as much 
as a larger face. After this cap has grown away from the original column, the central 
column region becomes shielded from the ambient vapour just as one arm on a 
double plate shields its neighbour (Frank 1982). For these reasons, the thin caps 
grow outward as tabular crystals. Using the expression for the supersaturation on a 
face and assuming that the supersaturation varies quadratically across the face, the 
positions at which the lacunae initially form can be estimated as described for figure 11. 
The resulting shapes of the crystals are shown in figure 19 for an abrupt transition from 
a columnar to tabular growth regime. An instantaneous transition should result in thin 
tabular caps even at fairly low supersaturations if the initial column is large. 

The secondary habit also depends on supersaturation changes during growth. 
For instance, if the supersaturation starts high with growth occurring only along the 
outer rim of a face and later is lowered significantly, then the facet can spread inward 
to cover the entire face, thus producing the interior air voids that are observed 
(Bentley 1924). (However, at low ambient supersaturations, the surface supersatura- 
tion decrease caused by the increasing crystal size can also cause these air voids 
(Gonda and Koike 1983).) If dendrites experience a decrease in supersaturation, 
their ends develop larger facets and, because of the relatively large sensitivity of 
layer nucleation rates to supersaturation, natural variations in ambient supersatura- 
tion might be the main reason that P le  shapes have such a wide variety that there are 
‘no two alike’ (Bentley 1901). 
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Growth mechanisms and habits of snow crystals 2365 

$5. POLYCRYSTALS 
Observed polycrystalline habits generally support the previously described 

growth mechanisms, particularly the mechanism for the different low-temperature 
primary habits at high and low supersaturations (0 2.6). Polycrystals form when 
drops freeze in either the initial nucleation or during riming (Hallett 1964, Higuchi 
and Yoshida 1967, Uyeda and Kikuchi 1976), probably because a supercooled melt- 
solid interface can nucleate new crystal orientations (Knight 1971). The probability 
of polycrystal formation should thus increase with increasing supercooling and, 
because the interface area is larger, should also increase with increasing droplet 
size. This agrees with experiment (Pitter and Pruppacher 1973). Because rapid 
melt growth and large stresses during drop freezing can generate dislocations and 
other defects (Tiller 1991), polycrystals are more likely than single crystals to have 
defects. Hence, both layer nucleation and spiral-step growth can occur. Above 
-22"C, polycrystals are usually built of branched tabular crystals, which are the 
most common single-crystal habits at those temperatures. Below -22"C, polycrystals 
at low supersaturations are built of tabular crystals that are mostly lacunae free 
(Furukawa and Kobayashi 1978), but at high supersaturations they are built of 
columns that are usually hollow (Heymsfield and Platt 1984, Gow 1965); this agrees 
with the supersaturation dependence of single-crystal habits. 

0 6. EFFECTS FROM TEMPERATURE GRADIENTS 
Temperature gradients in snow crystals were neglected because they increase the 

complexity of the calculations and should not change the conclusions about 
the dominant growth mechanisms. Experimentally, however, decreasing the air's 
thermal conductivity decreases the likelihood of lacunae and makes growth more 
isometric (Gonda 1980). This can be explained by a larger temperature difference 
between the centres of the slow- and fast-growing faces; the surface supersaturation 
on the fast-growing face is reduced by latent heating more than that on the slow- 
growing face. The formation of lacunae also depends on temperature gradients along 
the fast-growing faces, but an estimate of this effect, to be reported separately, 
showed that this effect is small. 

4 7. CONCLUSIONS 
Explaining the known variety of snow crystal habits requires both spiral-step and 

layer nucleation growth, as had been argued earlier by Frank (1974). Adatom migra- 
tion between faces, which had been proposed previously as a cause of primary habits, 
probably influences only a limited number of habits such as thin disc crystals and 
trigonal crystals. Spiral steps are needed to account for both the low supersaturation 
and high vapour diffusivity growth shapes, whereas layer nucleation dominates 
growth at high supersaturations and explains the extreme aspect ratios of dendrites 
and needles, as first stated by Knight (1972). These two step formation mechanisms 
together with calculations of vapour diffusion to approximate shapes of snow crys- 
tals also explain the observed conditions for lacunae. On imperfect crystals, lacunae 
are needed for layer nucleation to produce the most anisotropic growth shapes such 
as needles and dendrites; furthermore, estimates of the supersaturation at the tips of 
dendrites growing at water saturation indicate that they retain small facets. At 
temperatures below -22"C, the variety of crystal habits suggests that the prevalence 
of tabular forms and occasional long solid prisms (Nle) at low supersaturation 
require either dislocation outcrops or stacking faults, whereas the more common 
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2366 J. Nelson 

hollow columns at high supersaturation probably arise from relatively fast layer 
nucleation on the basal faces. Experiments have not yet identified the causes of 
impurity-induced habit changes ( Q  1) but, because the layer nucleation mechanism 
is very sensitive to changes in edge free energy that can be caused by very low 
impurity concentrations, impurity-induced habit changes are more probably caused 
by changes in the layer nucleation rates than by changes in the defect properties or 
step speeds. 

Many observations have been explained by vapour and adatom diffusion on a 
finite cylinder with layer nucleation and spiral steps; however, further progress can 
be made, particularly below -16°C where critical supersaturations have not been 
measured. More experiments are needed to determine shape evolution more 
accurately, to obtain finer details of the dependence of the condensation coefficients 
on supersaturation, and to determine the characteristics of spiral or possible stack- 
ing-fault step sources on real snow crystals. Recent theoretical work using similar 
analysis as in 0 3, but applied to a solid hexagonal prism has a more precise descrip- 
tion of the formation of lacunae (Wood et al. 2001). When their model is extended to 
a hexagonal prism with lacunae, and an accurate model of surface diffusion on ice- 
vapour interfaces with competing step sources is determined, predictions of snow 
crystal growth habits will become more quantitative. However, this paper makes it 
clear which step formation mechanisms are needed, and what their approximate 
parameters are. Understanding snow crystal habits at a deeper level will require 
more knowledge of the surface properties of ice and, because the basal face seems 
to have more rapidly changing properties with temperature than the prism, knowl- 
edge of the microscopic properties of the basal surface might be the most important. 
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A P P E N D I X  A 

LAYER NUCLEATION AT A CRYSTAL EDGE 
Layer nucleation on snow crystals is different from most treatments that assume 

uniform supersaturation (for example Hillig (1966), Lewis (1980) and Arima and 
Irisawa (1990)) because vapour diffusion produces supersaturation gradients along 
snow crystal surfaces. The following treatment is based on the work of Frank (1982) 
and formulated to use measured critical supersaturations. It is assumed that the edge 
has the highest supersaturation so that new layers nucleate there, and that the sur- 
face supersaturation equals the adatom supersaturation far from a step (BCF). 
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Growth mechanisms and habits of snow crystals 2367 

The nucleation rate J per area for disc-shaped embryos at low supersaturations is 
roughly 

J = 2nr,uno 2 exp (- (k;:z)) ’ 

(Lewis 1980) where r,, the radius of the critical embryo, equals aoK/kTae; u is the 
hopping rate times the jump distance for adatoms of concentration no, K is the edge 
energy per length and a. is the area occupied by an adatom on the surface (approxi- 
mately equal to 0.85 x m2). The exponent in equation (A 1) is the Gibbs free 
energy of a critical embryo divided by kT. With K as the pre-factor in equation 
(A I), 

J =  K exp (-ln(KA) *), 
4 2 )  

where A is the area for nucleation and a,, = naoK2/[ln(KA) (kT)2] is the critical 
supersaturation defined experimentally as the value of a when one layer nucleates 
per second. The terms in the exponent and pre-factor are poorly known but, if 
a, M 0.01, a reasonable lower bound for K is 6 x s. Assuming that 
A M 10p9m2, In ( K A )  = 48. If A is instead only 0.1 pm-2 (i.e. lo4 times smaller), 
aCr as defined above increases by only 20%. Thus, the dependence of acr on the 
nucleation area can generally be neglected. 

Because a changes with position on the surface, the growth rate R, from nuclea- 
tion is the layer height h multiplied by the integral of J over the area containing only 
one critical embryo. This area lies between the previously nucleated step and the 
edge, that is the face perimeter multiplied by the distance y that a step moves towards 
the centre before the next step nucleates. However, y must be determined self-con- 
sistently as it depends on growth rate, and this depends on how a step collects 
adatoms. 

Steps collect adatoms from both lower and upper terraces, but generally with 
greater collection efficiency from the lower terrace (for example Ehrlich and Hudda 
(1966), Sears (1955)). The step motion experiments (for example Hallett (1961)) 
indicate some upper-terrace collection; hence ice step collection should lie between 
equal collection and only lower terrace collection. In the latter case, the uppermost 
terrace at the edge is not depleted of adatoms; assuming that this terrace is much 
smaller than the crystal face, J is relatively uniform in this nucleation region. Hence, 
the integral of J is just J at the edge multiplied by the area, which depends on a, and 
step spacing y as 

Rn = 6 x 1029h exp -48- 2nay. ( 3 
Requiring self-consistency, equation (A3) is equated to the growth rate R, from 
steps separated by y (BCF) near the crystal edge and, with adatom migration dis- 
tance x, 
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2368 J. Nelson 

Figure A 1. Condensation coefficients for layer nucleation from an edge with only lower- 
terrace adatom collection (equations (A 4) and (A 5 ) )  and the exact result using equa- 
tions (A 3) and (A4) (. . . . . .). The rightmost solid curve assumes equal collection from 
lower and upper terraces (equation (A6)). The actual curve for ice is unknown but 
should lie between these two cases. 

where f2 = hao and a,, is the condensation coefficient for layer nucleation with only 
lower-terrace collection. At a fixed oe, R, decreases and R,  increases with increasing 
y such that they are equal at the value that determines the growth rate. Both R, and 
R,, and thus the growth rate, increase with increasing 0,; however, as R, increases 
much more rapidly than R,, the step spacing y decreases with increasing oe. An 
accurate approximate solution to equations (A 3) and (A 4) is derived by replacing 
tanh OiM by Y l ( X  + Y ) :  

48 x 1027ax exp (-480cr/oe) 
X aoNvd 

which is very sensitive to oe, but insensitive to X. a,, is plotted with the exact 
solution in figure A 1; both increase rapidly, even near one, because the nucleation 
rate is insensitive to the crystal area. 

Equal collection efficiency is slower because a step travelling from the edge 
collects molecules from the upper terrace, thus reducing the adatom supersaturation 
in the nucleation zone. This non-uniform depletion makes the nucleation rate inte- 
gral intractable. Approximating a(z)  by its average over the upper terrace allowed J 
to be brought out of the integrand, then numerical root finding was used; the result is 
plotted as the rightmost curve in figure A 1. An approximate fit to the condensation 
coefficient a,, for equal step capture is 

The growth rate is smaller than that for only lower-terrace collection because the 
exponent in J has a larger negative value owing to the depleted adatom supersatura- 
tion, but it is slightly larger than the multinucleation model for uniform supersatura- 
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tion calculated by Arima and Irisawa (1990). Both equation (A 4) and equation (A 6) 
assume many steps on a face, and thus these equations might not be accurate on very 
small crystal faces. 

A P P E N D I X  B 

SURFACE SUPERSATURATIONS ON A CYLINDER 

Surface vapour supersaturation O ( Z )  on a face controls the step generation rate 
and the step spacing, thus affecting growth rates, aspect ratios and formation of 
lacunae on crystals. In general, ~ ( z )  at any position z external to the crystal or on its 
surface depends on the ambient supersaturation offi and dimensionless vapour 
exchange fluxes F: 

(To obtain the vapour fluxes in molecules per second per square metre, drop the r b  

and rp and multiply by Neqv/4.) These fluxes F also equal the corresponding vapour 
diffusive fluxes, which are boundary conditions for the steady-state diffusion equa- 
tion external to the crystal. This boundary-value problem predicts that (Nelson 1994) 

.(Z) = urn - F b h b  (2, r )  - F p h p  (2 ,  r),  fB2) 
where hb and h, are positive functions given below for a finite cylinder (figure 2). The 
step sources will probably be close to face centres or the edge because only these 
regions can have the greatest supersaturation in a uniform environment. Therefore, 
only points in the centre of the basal face, the edge or centre of the prism are 
considered and these are labelled by subscripts b, e and p respectively. To avoid 
bulky expressions, the dependence of the h functions on z and r are assumed as is the 
dependence of a on the supersaturation. For instance, hbp represents h b ( Z ,  r)  when z 
is in the centre of the prism face and Qb represents a b ( o ( z b ) ) .  Putting equations (B 1) 
into equation (B 2) gives the surface supersaturation in terms of om, Qb, cup and facet 
areas divided by the vapour mean free path. For example, if the edge has the step 
sources, then a(&) = a(zP) = a,; so 

1 (B 3) 

F b  = (Ybgcrb. (B 4) 

0, - a e  (1 + a p r p h p e )  
F b  = 

be 

Equation (B 3) shows how the vapour diffusive flux responds to the surface super- 
saturation at the edge. As a, increases, the vapour gradient between the surface and 
ambient decreases; so this flux decreases. With a, > 0, the basal flux decreases with 
increasing size of the prism face as expected. Equation (B 4) is the vapour exchange 
flux; it increases rapidly with increasing cre for layer nucleation, but gradually for a 
spiral step. Setting them equal gives crc and thus Fb: 

Gffi a, = 
f abrbhbe -k aprphpe ’ 

which must be solved numerically because and a, are nonlinear functions of ere. 
Putting this into equations (B 4) and (B 2) gives F b  and cr respectively in the face 
centres. The latter are 
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2370 J. Nelson 

O{b,p} = + abrb(hbe - hb{b,p)) + Qprp(hpe - hp{b,p})l. (B 6) 

For q,, the second term on the right, hbe - hbb,  is negative and the third term is 
positive so that a large vapour sink on the basal face greatly reduces the vapour 
density in the centre of the face, but a large sink on the prism has the opposite effect. 
The converse holds for up. Consistent with the experiments of Humphreys-Owen 
(1949), the highest surface supersaturation is if the prism face grows much faster 
than the basal face but is up if the opposite holds. Between these limiting cases, ue is 
the highest surface supersaturation. 

When the supersaturation is greatest in the basal centre, the dominant step 
sources should also be there and, assuming that prism growth is by layer nucleation, 
then the edge will be the step source for the prism face. In this case, it can be shown 
that moving the step source on the basal face to the centre increases the basal growth 
rate and decreases the prism rate. This effect, and the converse when the prism face 
centre has the highest supersaturation, tends to reduce growth rate anisotropies 
unless lacunae form. The solution to equations (B 1) and (B2) for this case is 

(B 7) am[1 + abYb(hbb - hbe)l a, = 
$- a b r b h b b  + aprphpe + abrbapYp(hbbhpe - hbehpb) ' 

When the step source for the basal is the edge and the centre for the prism, the 
resulting supersaturations can be obtained from equations (B 7) and (B 8) by sub- 
stituting the subscripts on h which indicate the position from e to p and from b to e. 

b 
0.5 t 

1 10. 
0.01) r 0.1 

Figure B. 1. Functions that describe how growth on the basal face affects supersaturation hbb 
in the centre of the basal face (-, curve b), supersaturation hbp in the centre of the 
prism face (. . . . . ., curve p) and supersaturation hbe at the edge (--, curve e). The 
larger the magnitude, the larger is the reduction in supersaturation for a given basal- 
face growth rate. 
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I 
0.5 

h 0.3 
P 
0.2 

0.15 

0.1 

Figure B.2. Similar to figure B1 t functions that describe how growth on the prism face affects 
supersaturation h,, in the centre of the prism face (-, curve p), supersaturation hpb 
in the centre of the basal face (. . . . . ., curve b) and supersaturation h,, at the edge 
(- - - , curve e). 

Similarly, for step sources in the centre of both faces, the supersaturations follow 
from equations (B 7) and (B 8) by replacing e with p. 

The values of hb(z, r )  and h,(z, r )  are products of large matrices with elements 
containing Bessel and hyperbolic functions (Nelson 1994). Because they are too 
bulky as such, the following functions that are plotted in figures B 1 and B2 are 
used; these functions fit within about 1% the calculated values for r between 0.01 
and 20: 

hbe = 0,7071 10-0.1315 tanh {0.8060[l0g(T)+0.1854]-0.0639 [lOg(r)]*}-O.3314, 

hb, = hb,{0.5019 - 0.499 tan h [log (Y1.043) - 0.089 82 + 0.048 07 [log (r)]*]}, 
hbb = hbe( 1.955 + 0.387 tan h {0.819[10g (r)  + 0.215]}), 

h - 0.345 lr[1.932+0.4976 10g(T)+0.1058 [ lOg(r)]*]- ' -0 .5  
pe - 7 

h,, = h,,(1.583 +0.2919 tanh{0.7847[log(T) - 0.05485]}), 

hpb = h,, - rp0.5(0.0616 tanh { 1.028[log (r)  + 0.48461) + 0.0636). 
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