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Theory of isotope fractionation on facetted ice crystals 

Sample manuscript – to show paragraph numbering style and paragraph points.
‡
 

 

Abstract  (Do not number the abstract paragraph or paragraphs.) 

Present models of the differential incorporation of isotopic water molecules into vapor-

grown ice omit surface processes that may be important in temperature reconstructions. 

This article introduces a model that includes such surface processes and shows that 

differences in deposition coefficients for water isotopes can produce isotope fractionation 

coefficients that significantly differ from those of existing theory. For example, if the 

deposition coefficient of H2
18

O differs by just 5% from that of ordinary water (H2
16

O), 

the resulting fractionation coefficient at 20% supersaturation may deviate from the 

kinetic fractionation (KF) prediction by up to about ±17‰. Like the KF model, this 

“surface-kinetic” fractionation model generally predicts greater deviation from the 

equilibrium prediction at higher supersaturations; indeed, the sensitivity to 

supersaturation far exceeds that to temperature. Moreover, the model introduces possible 

new temperature dependencies from the deposition coefficients. These parameters need 

to be constrained by new laboratory measurements; nevertheless, the theory suggests that 

observed 18
O changes in ice samples are unlikely to be due solely to temperature 

changes.  
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1. Introduction 

[1] Ever since the late 1950s, the fractionation of isotopes during the vapor deposition of 

ice has been used to make temperature reconstructions from ice cores (see, e.g., Langway 

Jr., 2008). In particular, the empirical relation between δ
18

O (or another water 

isotopologue) in surface snow and the mean surface temperature of a given region has 

been used to estimate trends in the formation temperatures of ancient ice in cores 

extracted from the same region (e.g., Dansgaard et al., 1969). However, because a crystal 

can form at various regions of the atmosphere and grow while falling through layers of 

variable temperature before reaching the surface, the mean surface temperature may not 

equal the crystal‟s condensation temperature. So, how precisely can we determine a 

crystal‟s condensation temperature based on its isotope content? 

[2] Such condensation  temperatures have been estimated from equilibrium fractionation 

theory. But in 1984, Jouzel and Merlivat, hereafter “JM”, showed that this theory 

disagrees with the empirical surface-snow relation. Their solution was to replace the 

equilibrium fractionation coefficient with a supersaturation-dependent kinetic 

fractionation (KF) coefficient. By selecting the right supersaturation-temperature relation, 

their model could fit the δ
18

O observations. But the KF coefficient ignores surface 

processes that are crucial to the growth of facetted crystals. If we consider such processes 

in a new theory, how much might the fractionation coefficient change? And could this 

change affect temperature reconstructions? 

[3] This paper develops a theory of fractionation on facetted crystals that includes surface 

processes. The resulting fractionation coefficient differs from the KF prediction by an 

amount  that may be as large as ±17‰. As described in section 5, this  gives an 

uncertainty in the inferred (i.e., reconstructed) temperature of 15 ºC, though in practice, 

several factors will lower this uncertainty. But because the surface effect is potentially 

large, new experiments on  for facetted crystals are greatly needed.   
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2. Background 

2.1 Facetted growth implies regulation by surface processes 

[4] The surface of growing atmospheric ice crystals often consists of crystalline facets, 

sometimes wholly so, which indicates a reduction of growth rate from surface processes 

(Nelson and Baker, 1996). Without such surface processes, an initially spherical frozen 

droplet would remain spherical as the crystal grew until being perturbed by a sufficiently 

large temperature or vapor-density non-uniformity, after which rounded protrusions 

would develop. Instead, initially spherical frozen droplets quickly grow into a great 

variety of shapes. Thus, the existence of facets, however small, indicate an influence of 

surface processes, and if these processes affect the incorporation of ordinary water into 

ice, they are likely to also affect the incorporation of isotopic water. That is, surface 

processes should affect isotope fractionation. 

 

2.2 Crystal growth with vapor and surface impedances 

[5] The net vapor flux F (# m
-2

 s
-1

) of ordinary water molecules to an ice surface is (e.g., 

Nelson and Baker, 1996)  
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where v is the mean vapor-molecule speed, NS is the vapor number density at the surface 

(molecules m
-3

), NEQ is the equilibrium vapor number density, a function of the surface 
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temperature TS, S is the surface supersaturation, and  is the deposition coefficient 

function. In general,  ranges between 0 and 1, depending on both TS and S, and 

depends on whether the crystal face is basal, prism, or some other orientation. Through 

section 3, we assume all faces are identical and thus described by just one . In section 4, 

we consider more realistic crystals with two face types.  

[6] The surface supersaturation lies below the far-field supersaturation  ≡ (N - 

NEQ)/NEQ, where N is the far-field vapor density, by an amount that depends on how the 

surface and surroundings impede growth. Specifically,   

  

Z
S




  , 

(2) 

  

where Z, a dimensionless number, is the total impedance to growth discussed below 

(Kuroda, 1984; Yokoyama and Kuroda, 1990; Nelson and Baker, 1996). Here and 

elsewhere, the same relations also hold for each isotope type, whether HDO (i.e., HD
16

O) 

or H2
18

O, except with different values of the quantities F, v, NS, NEQ, , N∞, and Z. These 

quantities thus have superscript 'i', which stands for either “HDO” or “H2
18

O”.  

 [7] The total impedance equals the sum of ZV, the vapor diffusion impedance, ZH, the 

thermal impedance, and ZS, the surface impedance. ZV accounts for the impedance of the 

vapor diffusing through air to the crystal surface and increases in proportion to the crystal 

size times v/D (Appendix A). Larger crystals are surrounded by larger vapor-depleted 

regions and thus have greater impedance. As an example, at sea-level pressure, a 

spherical crystal starting at 1-m radius and ending at 500 m has ZV values increasing 

from 7.5 to 3700. At lower pressures, ZV decreases in proportion to the pressure decrease. 

The thermal impedance arises from the temperature rise of the crystal, the temperature at 

which the latent heating balances thermal diffusion to the surrounding air. Its magnitude 
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decreases rapidly with decreasing temperature (in proportion to NEQ) and is less than ZV 

below about –5 C (Nelson & Baker, 1996). So to simplify the expressions, we drop ZH, 

though it can easily be added to ZV in all that follows.  

[8] The surface impedance equals the inverse of the deposition coefficient: 

  



1
SZ   . 

(3) 

  

This impedance results from an increase in surface-mobile molecules that desorb from 

the surface. The number of such molecules per area of surface exceeds the equilibrium 

value because the supersaturated vapor produces a greater-than-equilibrium flux of 

molecules to the surface and some of the excess molecules do not reach the strong-

binding sites on a surface step. Thus, a molecule may fail to reach a step, or having 

reached a step, fail to bind to the step. On a micron-or-larger facet, the fraction of the 

incident molecules that reach a step should be significantly below unity. 

 

3 Basic theory of surface-kinetic fractionation 

 

[9] Under constant conditions, the ratio  of the number of isotope molecules to H2O 

molecules in the crystal equals the ratio of their respective net vapor fluxes to the surface. 

From eqs. 1 and 2, this ratio equals 
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where z  ZS/ZV and d’  D/D
 i

, the ratio of the vapor diffusion constants. But, by 

definition of the equilibrium fractionation coefficient S (JM, eq. 7), the corresponding 

isotopic number ratio in the vapor differs from that in the solid by the equilibrium 

fractionation ratio for ice: 
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(5) 

  

(Formulas in Jouzel (1986) for S are lnS = 11.839/T-28.224x10
-3

 for H2
18

O and lnS = 

16288/T
2 

- 9.34x10
-2

 for HDO.) We define the nonequilibrium fractionation coefficient  

like that in eq. 5 except with the far-field, non-equilibrium, vapor density:  
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Using eqs. 4, 5, and 6 to eliminate N
 i

EQ, N
 i

∞, and , one gets  
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[10] Three limits of eq. 7 stand out: the equililbrium limit, the KF limit, and the surface-

kinetic limit. In the first, S when   0. In the KF limit, the surface impedances 

vanish (z, z
i
  0) giving   
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which shows that KF fractionation occurs whenever d’  1/S. Equation 8 agrees with 

JM‟s result, though they wrote the equivalent expression as K∙S. (Fisher (1991) does a 

more detailed analysis of the temperature difference between crystal and air, but the 

result is nearly indistinguishable from the KF result.) Finally, in the surface-kinetic limit 

(z, z
i
 >> 1) 
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showing that surface fractionation occurs when y∙x  1/S.  

[11] Thus, fractionation depends on four factors: S, d’, y, and x. Physically, S arises 

from different isotopic rates of desorption of an equilibrium distribution of water species 

on the ice surface. But under supersaturated conditions, vapor flows to the ice surface, 

producing additional fractionation due to different isotopic rates of vapor diffusion (d’), 

molecular impingement to the surface (y), and desorption from the surface (x). The 

isotopic desorption rates change because the surface has a greater-than-equilibrium 
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concentration of mobile water species; the species with a lower deposition coefficient 

will have a greater increase in mobile molecules on the surface, and thus a corresponding 

increase in desorption rate. The first three factors are close to unity (Table 1) and 

independent of supersaturation. However, x may vary with supersaturation and is 

presently unknown. Here, we assume a range of 0.8 ≤ x ≤ 1.2 as described in Appendix 

B.  

[12] For surface fractionation to be significant, the surface impedance must be 

comparable to, or larger than, the vapor impedance. To determine the surface impedance, 

we must estimate  and i for a given set of conditions. These conditions influence  

through S. We can approximate various functional forms using two parameters 1 and n 

as  

  

nS )(
1


  , 

(10) 

  

where n > 0 and 1 is a characteristic supersaturation that depends on temperature and 

surface properties of the crystal facet. To determine  and S, one must combine eq. 10 

with eqs. 2 and 3. In the linear and quadratic cases (n = 1 or 2), one can solve for  

analytically and deduce S, but the general case requires a numerical method. Numerical 

results are described in Appendix C and used in the calculations for Figs. 1 and 2. 

[13] At a given temperature and supersaturation, two variable factors affect : the surface 

impedance ratio z for regular water and the ratio of surface impedances x ≡ i. The 

former increases with an increase in either the parameter 1 or n, but decreases with 

increasing crystal size, as shown in Fig. 1. In addition, z increases with elevation due to 

the air-pressure dependence of D.  
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[14] Deviations from the KF prediction occur at large z and when x differs from the KF 

limit of d’.  When x < 1, the deposition coefficient of the isotope exceeds that of regular 

water, making the ice richer in isotope by an amount that depends on z. For example, at 

relatively high surface impedance, as in the upper „beaded‟ curve in Fig. 2 (z > 3 over the 

entire supersaturation range), the fractionation lies above the KF value because x = 0.95, 

which is less than d’ = 1.03. But, as x is not below 1/S, the fractionation does not exceed 

the equilibrium value, instead lying roughly halfway between the KF and equilibrium 

values. Similarly, when x > d’, the surface fractionation acts in the same direction as KF, 

driving the degree of fractionation even lower. For example, when x is instead 1.05, the 

fractionation lies distinctly below the KF curve (Fig. 2, lower beaded curve). In this case, 

the fractionation from y acts together with that from x, increasing the effect. 

[15] If x deviates further from unity, the surface impedance need not be large for surface 

fractionation to have a large effect. For example, with middling values of z, the 

fractionation exceeds S when x = 0.8 (Fig. 2, top curve). And when x = 1.2, the surface 

fractionation may lie below the KF value by an amount nearly double the amount KF lies 

below the equilibrium value (Fig. 2, bottom curve). In contrast, at low surface impedance, 

the fractionation remains close to the KF value even when the x value deviates 20% from 

unity.  

 

4 Surface-kinetic fractionation to realistic crystals 

4.1 Cylindrical crystals 

 

[16] We now make the model more realistic by considering crystals shaped as tabular or 

columnar cylinders. In addition to introducing the variable height/width ratio (aspect 
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ratio), the cylinder case has two distinct faces, with the top/bottom, or “basal” face 

having fractionation value B, and the side or “prism” face having value P.  

[17] These fractionation values follow from eq. 7 with the appropriate substitution; for 

example, for B, we substitute zB for z and zB
i
 for z

i
. Concerning zB and zP, the surface 

impedances equal the reciprocals of B and P, just as in the sphere case, but the vapor 

impedances are more complex, depending not only on crystal size, but also on shape and 

rate of shape change (see Appendix A).   

[18] To determine values for B,P, one must know the deposition coefficients, which 

means determining just one number: S. With a nonspherical crystal such as the cylinder, 

S varies along the surface. But, as described elsewhere (e.g., Wood et al., 2001), the 

point of highest S determines the growth rate and thus is the appropriate S value for the 

deposition coefficient (eq. 10). This point is usually the edge of the facet (unless some 

face has essentially stopped growing (Nelson, 2001)). Here, we assume this is the case 

for both the basal and prism facets. As a result, the S value solves 
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which is similar to eq. 2.  

[19] To get the mass-averaged  one multiplies each coefficient by the mass-uptake 

(flux times facet area) on the corresponding facets: 
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where  ≡ B/P is the growth-rate ratio (Nelson and Baker, 1997). For example, in 

steady-state, , and thus 2/3 of the mass enters via the prism faces. But in general, a 

range of fractionation values can occur, depending on the crystal aspect ratio, the growth-

rate ratio, and the fractionation to each face. The last factor depends on the ratios of the 

deposition coefficient functions xB  B/iB and xP  P/iP. 

[20] Results show that the crystal shape affects fractionation at high z, particularly when 

the deposition coefficient ratios differ between the faces. For example, when z > 2.5 (all 

solid curves in Fig. 3), but both facets have the same x ratio of 1.05, the fractionation 

coefficient is only slightly less than the sphere result. This is shown by curve 1 in which 

 =  10. At larger , the fractionation coefficient decreases further, though the effect 

remains relatively small. Larger influences on  can occur when xB  xP. In particular, for 

steady-state growth ( with  = 10, fractionation decreases when xP > xB (curve 2), 

even though their average still equals 1.05 because in steady state most mass enters 

through the prism face, which has an xP value of 1.1.  

[21] Usually  deviates further and further from unity during growth (Takahashi et al. 

1991), meaning  for columns and  for plates. In the non-steady-state case of 

curve 3, most mass enters through the basal face, and in this case xB = 1.1, bringing the 

curve lower. Similarly, when nearly all of the mass enters through the prism face, as in 

the tabular-crystal case in curve 4, then the fractionation coefficient is significantly below 

that of the sphere when xP = 1.1. These cases (2-4) show deviations in  below that of an 

equivalent sphere of x = 1.05 because the face with most of the mass uptake had x = 1.10. 

If instead they had x = 1.00, then the resulting  value would be above that of a sphere. 

These cylinder results emphasize what we found with the sphere: when the surface 

impedance dominates, small changes in x can introduce relatively large variations in 
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fractionation coefficient. For the cylinder, this applies to small changes in x on the facets 

that dominate growth. 

 

4.2 Incompletely facetted crystals 

[22] Stellar and hollowed crystals are incompletely facetted, meaning that some of the 

mass uptake comes from non-facetted (NF) regions. For this case, we need an extra term 

in eq. 12: 

  

NFNFPPBB MMM   , (13) 

  

where Mj stands for the fraction of mass uptake that occurs through face type “j” and NF 

equals the fractionation coefficient for non-facetted regions. The latter coefficient should 

equal   when 1, and thus nearly equal KF.  

[23] For stellar or dendritic crystals, it is hard to accurately estimate MP and MNF without 

newer, more careful measurements. I attempted such an estimate in Nelson (2005), using 

the measurements of Takahashi et al. (1991), and found that MNF varied between 0.77 and 

0.87 for crystals between –13.3 and –16.8 C. Thus, most of the mass uptake on such 

crystals occurs on the non-facet regions.  

[24] A similar difficulty occurs with hollowed columns, except the problem instead lies 

in estimating MB and MNF. However, if we assume that the hollowed regions are 

cylindrical cones extending to the crystal center, and if the volume of the hollows remain 

a fixed fraction K of the volume of the equivalent non-hollowed crystal, then the resulting 

mass-uptake fractions can be shown to equal  
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When the hollow extends across the entire basal face, K has its maximum value of 1/3. In 

this case, MB = 0 and the fraction of mass uptake by the non-facet region MNF has its 

maximum value, a value that depends on  . Using the measurements for hollow 

columns at –5.3 C from Takahashi et al. 1991,   = 5.4, giving MNF = 0.6. As the 

hollows did not appear to extend across the basal faces, this value may be an 

overestimate. Nevertheless, significant amounts of uptake likely occur in the non-facet 

regions of hollow columns. 

 

 5 Discussion: The need for new measurements  

[25] In many regions, precipitating ice largely consists largely of single-crystalline and 

aggregates of incompletely facetted forms, forms for which the existing KF model may 

suffice because of the large uptake on non-facetted regions. However, precipitating 

crystals in polar regions (e.g., Lawson et al. 2006), crystals in cirrus and other high 

clouds, as well as surface hoar often consist of mainly facetted forms for which the new 

surface-kinetic model may be required.  

[26] To estimate how the present uncertainty in  for facetted crystals could produce 

uncertainty in inferred temperature T′ of precipitated ice, we transform the uncertainty in 

 to the uncertainty in the relative deviation of isotopic content in ice C, and then this 

uncertainty to a temperature uncertainty. In our notation 
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and thus an uncertainty in  of  gives an uncertainty in C of  
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Using the modeled gradient of 
18

O with respect to the condensation temperature 

dC
18

O/dTC from Jouzel et al. (1997), the uncertainty in inferred temperature T′ of 

precipitated ice is approximately 
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Thus, equating the possible range in  from Fig. 2 (~±17‰) to the uncertainty  the 

uncertainty in the inferred crystal growth temperature equals about 15 C, a large value. 

However, the uncertainty in the inferred paleoclimatic temperatures would probably be 

much less, reflecting a convolution of with the relative changes in supersaturation and 

degree of crystal faceting during a past climate shift. The effect of surface-kinetic 

fractionation may also be lessened because the ice record in a given layer is the yearly 

accumulation, and thus will have a greater mass contribution per crystal from the larger 

crystals that have less uptake on facets. 

‰/C 
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[27] Nevertheless, the surface effect, large or small is unknown. Previous vapor-to-ice 

fractionation experiments are limited to largely non-facetted crystals. Specifically, Jouzel 

and Merlivat (1984) exposed a –20 ºC surface to water vapor at 20 ºC, conditions that 

produce highly dendritic frost crystal forms. Uemura et al. (2005) analyzed similarly 

dendritic frost forms. Thus, although those experiments were appropriate for testing the 

KF model, they cannot be used to understand surface fractionation. Instead, to test this 

model, we need new experiments on completely facetted crystals.  

[28] Moreover, because  depends on both T and ∞, if we measure the dependence for 

both HDO and H2
18

O, one could then, in principle, use observed 18
O and D values to 

infer both the deposition temperature and supersaturation of an ice sample. 

 

6 Conclusions 

[29] Unlike kinetic fractionation theory, the surface-kinetic theory includes potentially 

important surface processes on facetted ice crystals. When the surface impedance to 

growth is low, both the kinetic and surface-kinetic models give similar predictions, 

showing significant deviations to equilibrium fractionation at moderate-to-high 

supersaturations. In contrast, when the surface impedance is comparable to the vapor 

impedance, the fractionation coefficient depends sensitively on the ratio of the deposition 

coefficient functions of the ordinary and isotopic water molecules, giving results that 

deviate sharply from kinetic fractionation results. Such conditions should hold during the 

growth of facetted crystals, and since facetted crystals are common in the atmosphere, the 

new theory should apply to some cases in which the kinetic and the equilibrium theory 

have previously been used. However, before the new theory can be applied to the 

atmosphere, we need to either measure the effect directly or experimentally determine the 

relevant deposition coefficient functions over a range of temperatures and 

supersaturations.    
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Appendix A: The vapor impedances 

[30] The vapor impedance depends on the crystal shape. For a spherical crystal 
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r
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where r is the radius of the crystal. For a cylindrical crystal  
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where rB, rP, hBE, hPE are from Nelson, 2001, with slight changes that are described next. 

Here rB = ZV(2/3)
1/3

/2
1/2

 and rP = ZV(2/3)
1/3 ½

 are normalized sizes of the top & 

bottom (basal) and side (prism) faces, with  the column length divided by its diameter. 

Physically, rB is the radius of the sphere that would have the same area as the basal faces 

of the cylinder, scaled by the distance 4D/v and written in terms of ZV for the sphere that 

would have the same volume. This makes it easier to compare to the spherical case.  

Similarly, rP is the scaled radius of the sphere with the same area as the prism faces of the 

cylinder. The two h functions fit   
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(In Nelson, 2001, the values are half the above, but the product rh is the same). Wood et 

al. (2001) showed that the above basis functions h are very nearly the same as the 

corresponding basis functions for a hexagonal column of the same aspect ratio.  

 

Appendix B: Estimated range of x  

[31] To estimate x, equate  
i
 to the ratio of surface migration distances (see e.g., 

Yokoyama and Kuroda, 1990). Measurements of the migration distance of ordinary water 

on ice (Mason, Bryant, and van den Huevel, 1963) indicated that it varied rapidly with 

temperature, decreasing by a factor of five when temperature decreased from -2 to -6 C, 

and then increasing again by the same factor from -6 to -12 C. If the corresponding 

curve for the isotope on regular ice is similar in shape, but shifted to higher temperature 

by a degree or more,  
i
 could be as small as 0.2 or as large as 5.0. Such large 

deviations from unity, however, may be unlikely, so the plots shown here use ratios 

between 0.8 and 1.2. Such a range is also consistent with measurements of bulk diffusion 

constants of HDO and H2
18

O into ordinary ice given that a) the migration distance is 

proportional to the square-root of the diffusion constant and b) the square-root of the 

measured ratio of diffusion constants for these two species at 163 K equals 1.3 

(Livingston et al, 1997). Although bulk and surface diffusion differ, the measurement 

shows that two water species can behave differently when diffusing in ice. 
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Appendix C: Analytic fit for surface impedance 

[32] By using a numerical method to solve for ZS for a range of n, /1, and ZV, and 

then fitting the curves to an analytic function, I found an approximate formula for . The 

formula estimates z within a few percent of the correct value, for the range of possible 

values of n, /1, and ZV. Specifically, if we use the derived parameter  

  

n
VZ

1

1

)(


 , 
(21) 

  

then the resulting fitted function is 

  

)5.11(
5.1),(

)4/1)1/((

10

)4/1)1/((

2 








nn

nn

V

S

nLog
nnZ

Z

Z
. 

(22) 

  

These two equations show that when 1 >  and n is large, z  (/1)
-n

 ZV
-1

, which 

becomes large. In contrast, z decreases as  increases. Figure 1 shows both of these 

trends. Moreover, as ZV increases during growth, z will decrease during growth. 
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